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Preface

A significant challenge facing policy decisionmakers tasked with combating crime,

terrorism, insurgent activity, or public health risks is the scarcity of resources that

can be applied to address these problems. In order to allocate limited resources, a

common practice is to identify areas where the problems are more pronounced and

then direct resources toward those focus areas. When the historical instances of the

problem may be represented geographically, spatial analysis tools can be used to

identify clusters of concentrated activity against which resources may be deployed.

In the extensive body of research addressing the use of spatial analysis, the term hot

spot has been adopted to indicate areas where there exists a greater-than-average

number of historical or anticipated problem events.

In 2005, as part of the RAND Counter Improvised Explosive Device (IED) Study,

the authors developed a methodology that could be used to identify IED hot spots

that was constructed to match the scarce resources available to various tactical com-

manders in Iraq. RAND’s modifications to existing spatial analysis tools allowed

decisionmakers to limit the number of candidate IED hot spots and to focus on areas

that conformed to the physical limits of the resources they intended to deploy against

IED emplacers (e.g., sensor ranges, reachability by quick response teams during the

IED emplacement stage). Additionally, the approach allowed the commanders to pri-

oritize the reduced set of resource-constrained hot spots based on temporal patterns

discerned from historical enemy IED emplacement activity.

This technical report describes a generalized version of the actionable hot spot

(AHS) methodology that may find usefulness beyond the counter-IED application for

which it was developed. Any decisionmaker who is faced with deploying scarce re-

sources to geographic areas where certain types of undesirable activity or phenomena

occur may find this approach useful. This approach is not intended to replace any

existing spatial analysis tools but rather to augment them with the ability to conduct

analysis where known constraints exist. To demonstrate the diversity of public policy

iii



iv Resource-Constrained Spatial Hot Spot Identification

areas under which this approach may be used, this report also provides three example

applications: one in domestic health care delivery (colon cancer screening in a state

located in the western part of the United States), one in law enforcement (crime in

a major metropolitan area), and one in the maritime domain with national security

implications (piracy in the Gulf of Aden).

This technical report is a product of the RAND Corporation’s continuing program

of self-initiated independent research. Support for such research is provided, in part,

by donors and by the independent research and development provisions of RAND’s

contracts for the operation of its U.S. Department of Defense federally funded research

and development centers. The research was conducted within the RAND National

Security Research Division (NSRD) of the RAND Corporation. NSRD conducts re-

search and analysis on defense and national security topics for the U.S. and allied

defense, foreign policy, homeland security, and intelligence communities and founda-

tions and other non-governmental organizations that support defense and national

security analysis.

For more information on the RAND National Security Research Division, see

http://www.rand.org/nsrd.html or contact the director (contact information is pro-

vided on the web page).

http://www.rand.org/nsrd/
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Summary

Crimes, improvised explosive device (IED) attacks, disease outbreaks, and other dis-

order events are not spread uniformly across space or time. Maps of historical data

generated by geospatial analysis often indicate localized clusters of notable events.

The rich literature on the use of spatial analysis across many research fields posits

several theories that attempt to explain the strength of spatial relationships among

events that lead to clustering. Independent of the underlying cause of the clusters of

events, a standard set of tools is available to the geospatial analyst community that

enables the user to identify and interpret disorder activity. Among these toolkits,

there has been increasing use of “hot spot” analysis to identify areas where clusters

of local disorder events are most prominent and where appropriate resources should

be deployed to deter, interrupt, or prevent further undesirable activity.

Resource-Constrained Hot Spot Identification

Hot spot analysis is frequently used to guide decisions about the deployment of re-

sources intended to address the disorder activity. When the amount of resources

is insufficient to address the entirety of the problem, hot spot analysis can also be

used by decisionmakers to select areas with more pronounced problems and then al-

locate resources to those focus areas. However, policymakers tasked with allocating

resources to address these problems often are keenly aware that the resources at their

disposal have limitations that may drive the effectiveness of the various courses of

action they desire to pursue. The decisionmaker who seeks to find an efficient and

effective means of deploying resources to address problem areas must consider that

his/her courses of actions are subject to the three types of constraints:

1. Spatial. The deployable asset(s) may have a fixed effective range (e.g., a visual

sensor with a fan-shaped 130◦ field of view and 500-m range).

xi
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2. Temporal. The deployable asset(s) may be only deployed or effective at par-

ticular times (e.g., the visual sensor is ineffective at night).

3. Quantity. The number of deployable asset(s) is finite (e.g., funding exists for

only two visual sensors).

In practice, since the decisionmaking consumers of standard hot spot analyses

consider these types of constraints after the analysis has been completed, the assets

being considered for deployment are often later determined to be an ineffective match

for the hot spot. Without considering these limitations before the execution of the

hot spot analysis, the resulting hot spots are often too large, inappropriately shaped,

or out of synchronization with deployable resources. The term actionable will be used

to indicate when the constrained resources are available and appropriately matched

with the problem against which they will be deployed. This introduces a demand for

“need-driven” methods that not only group data based on spatial similarity among

events, but also identify actionable clusters given resource constraints (Ge et al.,

2007).

Actionable Hot Spots

This research presents the actionable hot spots1 (AHS) methodology. An actionable

hot spot is defined as a hot spot having the same property as the standard hot spot

discussed earlier (higher-than-average concentration of events in the study area), with

one notable addition: An actionable hot spot is a hot spot that has been determined

to be appropriately sized, shaped, and synchronized with the cluster of disorder events

against which scarce resources will be applied. The methodology is not meant to re-

place existing hot spot analysis methods — rather, it is an implementable extension

to existing methods that leverages standard statistical and innovative algorithms to

ensure that only actionable hot spots are identified. The result of using this exten-

sion is that the decisionmaker, in addition to any exploratory spatial analysis where

resources have not been applied, is presented with a list of hot spots in which his/her

scarce resources can be effective. The application of constraints yields a reduced set

of solutions that both are implementable and can be used to more efficiently allocate

scarce resources. Naturally, before imposing constraints on hot spots that will render

them actionable, an analyst may first apply a variety of standard spatial analysis

tools to better understand the underlying data and their spatial distribution, and

1This term was coined by a RAND researcher, Richard Mesic.
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perhaps test some hypotheses that he/she has established to explain the reasons be-

hind the disorder activity. After the initial exploratory analysis has been conducted

and when constraints need to be introduced to guide resource decisions, the AHS

approach can be used. For the decisionmaker, this represents a significant change in

the way geospatial analysis is used to support their resource allocation.

Research Questions

In this report, we address three research questions:

1. Can existing geospatial tools be modified to ensure that any identified hot spots

are actionable, given known spatial resource constraints?

2. Can identified actionable hot spots be prioritized so that the decisionmaker

can efficiently allocate scarce resources to yield maximum effectiveness against

problem areas?

3. Can the AHS methodology be applied to guide resource allocation in research

areas beyond the IED application for which it was originally developed?

Hot Spot Identification

In geospatial software packages such as CrimeStat�, GeoDaTM , and ArcGIS�, the

standard set of available hot spot analysis tools fall into three categories (Cameron

and Leitner, 2005):2

Thematic Mapping. Concentrations of events are color-coded in discrete geo-

graphic areas that correspond to administrative boundaries (e.g., ZIP codes,

Census tracts, police precincts).

Kernel Density Interpolation. A smooth surface is overlayed on a map reflect-

ing the concentration of actual events, and spaces between events are assigned

interpolated value based on the amount of nearby events.

Hierarchical Clustering. Events are grouped according to their nearness to other

events.

2This is not an exhaustive list of hot spot analysis categories, but it does include those ap-

proaches that use a sample of automated identification of hot spots rather than subjective visual

interpretation.
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The three categories of geospatial hot spots are illustrated in Figure S.1, reflect-

ing maps of Boston burglary events in 1999 and provided by Cameron and Leitner

(2005). The first map reflects burglary rates per 100,000 residents by Census tract,

the second map reflects the density per square mile, and the final is a clustering

of events contained within ellipses.3 It should be noted that the use of hierarchical

clustering has been extensively discussed in spatial analysis because it is one source

of the well-known modifiable areal unit problem (MAUP) (Openshaw, 1984) that may

lead to misinterpretation of results due to the arbitrary boundaries that are used

to aggregate data. Application of AHS does not resolve the MAUP, so those who

interpret the results should consider that the problem may still exist.

Figure S.1
Boston Burglary Rates, 1999

RAND A8567-22

1 0 1 2

Miles

Thematic mapping Kernel density interpolation Hierarchical clustering

Source: Cameron and Leitner, 2005.

For each of the listed categories of hot spot analysis, it is possible to modify the un-

derlying algorithms to reflect the AHS methodology. This will result in generation of

hot spots that consider the spatial, temporal, and quantity resource constraints facing

the decisionmaker tasked with deploying resources to problem areas. Modification of

3Since the purpose of this illustration is to simply compare the maps resulting from the various

approaches, the density and rate scales are not shown.
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existing hierarchical clustering algorithms to enforce resource constraints is a rather

simple exercise. Kernel density interpolation and thematic mapping approaches re-

quire considerably more effort to modify, but they, too, can be altered to consider

resource constraints.

From Actionable Cluster to Actionable Hot Spots

After identifying spatially constrained clusters of disorder activity, the user will likely

be left with many clusters. Three natural question arise:

1. Which clusters are hot spots?

2. Which clusters are hotter than others?

3. Given the resource quantity constraints, against which hot spots should re-

sources be deployed to yield maximum benefit?

To be considered an actionable hot spot, it needs to be established that the con-

centration of events in the clusters is greater than in other parts of the study area.

The standard approach to establishing a large concentration would calculate two

concentration values:

1. across the study area — the total number of events in the study area is divided

by the total size of the area size (in square kilometers or miles), and the resulting

concentration is denoted by c1

2. within each cluster — the total number of events in a cluster is divided by the

total size of the cluster (using the same scale that was used for the calculation

of the study area) to yield a cluster concentration denoted by c2.

The cluster concentration is then divided by the study area concentration to yield

a value C = c2/c1. If C is greater than 1.0 + α (where α > 0 may be defined as needed

to highlight those hot spots that are distinctly different from the average density in

the study area), the cluster has a higher relative concentration and is considered to

be a hot spot. Actionable hot spots with higher relative concentration values are

therefore considered to be “hotter” than hot spots with lower relative concentration

values.
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Prioritization

After actionable clusters have been determined to be actionable hot spots, the total

number of these may exceed the resource quantity constraints of the decisionmaker.

It is therefore required that the actionable hot spots that are candidates for resource

deployment be prioritized in some fashion. Since the purpose of prioritization is

to match the spatially constrained resources available in limited quantities with the

problem, the prioritization should reflect the objective of the resource deployment

and — if relevant to achieving that objective — temporal constraints. For example,

if the objective is to reduce burglary in a small area and the deployable resource is a

police patrol car available during the midnight – 8am shift, it would make little sense

to put emphasis on historical events that occur during times when the patrol car is

not active. A prioritization approach should put more emphasis on disorder events

that occur at roughly the same time as the expected deployment of the resource.

For a given objective function and known constraints, this report proposes that

each candidate actionable hot spot be weighted according to how well it is synchro-

nized with the anticipated deployment of resources meant to combat future disorder

events. The synchronization with the expected time of resource deployment can also

be found through experimentation, but the basic shape of the weighting function

should reflect knowledge of the deployment patterns.

Once each observation has been appropriately weighted, a cluster score may be

computed, which is simply the sum of the weights in the hot spot. Prioritization

then becomes simple: The actionable hot spots are ordered based on their marginal

contribution to a cumulative total score (the total cumulative score will be equal to

the sum of the weights for distinct events that fall within all identified hot spots). Re-

sources should then be deployed first against the actionable hot spot with the highest

marginal contribution to the cumulative score, followed by the one with the second

highest score, etc., until the deployable resources are depleted. Since it is possible

that hot spots may overlap and so events may be counted multiple times, only distinct

events (those not already included in hot spots with higher marginal contributions)

are counted toward marginal cluster scores. Of course, all of the events in the highest

ranking hot spot will be used in the marginal score — the process of omitting nondis-

tinct observations need only be applied to subsequent hot spots in order to accurately

measure the marginal values.



Summary xvii

Measuring Expected Performance

Although it is not possible to know how effective the resource will be once it is de-

ployed, it is possible to use historical data to determine if the AHS-driven deployment

of resources would have correctly selected areas where future events actually occurred.

The performance metric is then the total number of events that occur within the rec-

ommended actionable hot spot during the resource deployment period.

For example, if the objective is to prevent burglary by sending out patrol cars

to hot spots during the 8am – 4pm shift (temporal constraint), and if the cars have

a patrol area of ten square city blocks (spatial constraint) and there are two patrol

cars available for deployment for a period of seven days (quantity constraint), the

computation of the historical metric would be done according to the following steps:

1. If the time when resource deployment will begin is represented by t (e.g., 8am

on June 1, 2009), weighted actionable hot spots (given the constraints) would

be computed using all relevant historical data available prior to t.

2. The two actionable hot spots with the highest weighted marginal scores would

be selected for action.

3. For the next seven days beginning at time t, the number of distinct burglary

events that occur within each hot spot (adjusting scores to avoid multiple counts

of events that occur in more than one hot spot) during the 8am – 4pm period

is counted. This is the expected performance metric.

With the performance metric, it is now possible to see whether the selection

of actionable hot spots was successful. For decisionmakers comparing alternative

resources for deployment, this approach will allow them to assess their potential ability

to deter, disrupt, or prevent activity using various resources under consideration.

Therefore, the AHS performance metric can be tested on historical data to yield an

expected level of effectiveness and help choose the deployable resources that are likely

to be most effective.

Case Studies

The actionable hot spot methodology was originally developed to help fight the

IED problem in Iraq. Existing spatial analysis tools were modified, allowing

decisionmakers to limit the number of candidate IED hot spots to areas that con-

formed to the physical limits of the resources tactical commanders intended to deploy
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against IED emplacers. Through examples across different research areas, Chapter

Five serves as a response to the third research question: Can the actionable hot spots

methodology be applied to guide resource allocation in research areas beyond the IED

application for which it was originally developed?

Any decisionmaker who is faced with deploying scarce resources to geographic

areas where certain types of undesirable activity or phenomena occur may find this

approach useful. This approach is not intended to replace any existing spatial analysis

tools, but rather to augment them with the ability to conduct analysis where known

constraints exist. To demonstrate the diversity of public policy areas under which

this approach may be used, this report also provides three example applications: one

in the maritime domain with national security implications (piracy in the Gulf of

Aden), one in domestic health care delivery (colon cancer screening in a western U.S.

state), and one in criminal justice (crime in a major metropolitan area). In each

case, the actionable hot spot methodology was able to find clustering solutions that

both respected the spatial, temporal, and quantity constraints and provided suggested

future hot spots where events did actually occur.

We recognize that there are numerous models addressing resource allocation that

have been specified for problems related to police, fire, emergency medical services,

health care, etc., in addition to the IED emplacement problem. Our case studies ex-

plore research topics in which RAND is currently involved and where both the problem

objectives and constraints have been clearly established by subject matter experts.

Although a solution to the domestic health care delivery can be easily handled by well-

known approaches such as the Maximal Covering Location Problem (MCLP) (Church

and ReVelle, 1974; Church, 1984), we believe that the AHS approach provides an al-

ternative solution that leverages commonly used hot spot identification tools and may

appeal to geospatial analysts and policymakers unfamiliar with integer-programming

approaches. Our approach may also add value in those types of resource allocation

problems discussed in the other case studies — and perhaps additional topic areas;

the prioritization phase of the AHS methodology captures shifts in spatial patterns

that may occur as new target opportunities arise and/or the deployment of resources

intended to interrupt future disorder events causes the actors to avoid detection. In

that sense, we see the AHS approach as one possible way to address resource allo-

cation problems when there is a repeating action-reaction exchange between those

actors who deploy resources against disorder activities and those who are responsible

for them.
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Implications

Decisionmakers tasked with deterring, interrupting, or preventing undesired activities

are limited by constraints caused by available, scarce resources; these resources often

lack the ability to cover the vast geographic areas in which the problems occur. In the

extensive body of research addressing the use of spatial analysis in criminal analysis,

pattern recognition of insurgent and terrorist activity, and public health, the term

hot spot has been adopted to indicate areas in which there is a greater than average

number of problem events. This technical report provides a methodology that can be

used to select and prioritize hot spots that can be matched with constrained resources.

The methodology provides a means of measuring the expected effectiveness that would

result by deploying resources against a problem using scarce resources. Not only does

this approach provide a tool for aiding the decisionmaker as he/she chooses how to

allocate existing resources, it also provides a mechanism for comparing the potential

effectiveness of alternative resources.

The AHS methodology is not intended to replace any of the existing tools widely

used by spatial analysts. Rather, it provides an enhancement to hot spot detec-

tion algorithms by enabling the geospatial analyst to match problem areas with

the resources that they plan to deploy to combat the underlying problem. Users

of CrimeStat�, GeoDaTM , and ArcGIS� across many fields may find utility in this

approach when they are faced with constrained resources. Originally developed for

a particular application, combating IED emplacement in Iraq, the approach had ob-

vious applications in other fields. By modifying the original application to make it

generalizable across a broad array of research topics, we have created a policy decision

tool that may find utility across many topical areas (see Table S.1 for a nonexhaustive

list of potential applications).
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Table S.1
Potential Applications of Actionable Hot Spot Methodology

Topic Application Deployable Resource
National security Maritime piracy Visual surveillance assets

Armed surface ships

Counter-IED/indirect fire Snipers
Visual surveillance assets
Infrared detectors
Quick reaction forces

Insurgent network detection Visual surveillance assets
Signal direction-finding assets

Homeland security Border integrity Visual surveillance assets
Acoustic surveillance assets
Border patrol agents

Criminal justice Policing Police patrols
Visual surveillance assets
Task forces

Health Disease prevention Screening clinics
Targeted public service campaigns

Pandemic crises Immunization clinics
Targeted public service campaigns

Labor and population Economic disparity Employment programs
Poverty assistance
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CHAPTER ONE

Introduction

The use of timely and accurate localized data to drive law enforcement

operations toward more efficient and effective resource deployment is the

benchmark for 21st-century policing. Strategic operations require vigilant

evaluation of data through mapping technologies to identify hot spots that

ultimately drive resource deployment.

— Burch and Geraci, 2009, pp. 18–20

Crimes, improvised explosive device (IED) attacks, disease outbreaks, and other dis-

order events are not spread uniformly across space or time. Maps of historical data

generated by geospatial analysis often indicate localized clusters1 of disorder events.

The rich literature on the use of spatial analysis across many research fields posits

several theories that attempt to explain the strength of spatial relationships between

events that lead to the clustering of observations. Independent of the underlying

cause of the clusters of disorder, a standard set of tools is available to the geospatial

analyst community that enables the user to identify and interpret disorder activity.

Among these toolkits, there has been increasing use of “hot spot analysis” to identify

areas where clusters of local disorder events are most prominent and where appropri-

ate resources should be deployed to deter, interrupt, or prevent further undesirable

activity.

Hot Spot Definition

Research addressing the use of spatial analysis has adopted the term hot spot to

indicate areas demonstrating a higher concentration of disorder events. In this report,

1A cluster is a group of two or more data observations that are similar. In geospatial analysis,

similarity — in part — reflects the spatial proximity between observations.

1
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the formal definition of a hot spot that will be used is

• an area that contains a cluster of observations whose spatial

dependence has been established using statistical testing; with a reasonable

amount of confidence, it can be determined that the clustering pattern could

not have occurred randomly, and

• the concentration of problem events in the cluster is greater than the

average concentration of events in other parts of the study area.

Approaches to hot spot analysis are employed with different goals in mind (Gesler

and Albert, 2000; Wilson, 2005). One approach is general analysis, which is used

to determine if the disorder activity is clustered within the study area; the other

is focused analysis, which is used to identify the phenomena that are clustered in a

particular place in the study area. Associated with each approach is the assumption

that, once the analysis has been completed and hot spots identified, it will be used

to guide decisions about the deployment of resources to the areas experiencing the

most problems. When the amount of resources is insufficient to address the entirety

of the problem, hot spot analysis can be used by decisionmakers to select areas with

more pronounced problems and then to allocate resources toward those focus areas.

However, policy decisionmakers tasked with allocating resources to address these

problems often are keenly aware that the resources at their disposal have limitations

that may alter the effectiveness of the various courses of action they desire to pursue.

Resource Constraints

The decisionmaker who seeks to find an efficient and effective means of deploying

resources to address hot spot areas must consider that his/her course of actions is

subject to the three types of constraints listed in Table 1.1.

In practice, since the decisionmaking consumers of standard hot spot analyses do

not consider these types of constraints in their analysis, the assets being considered

for deployment are often later determined to be an ineffective match for the hot spot;

the hot spots are often too large, inappropriately shaped, or out of synchronization

with deployable resources. For example, if a surveillance camera with a range of

300 m is to be deployed to address disorder, hot spots with radii of 2 kilometers

cannot be effective against the entire problem area using that camera. Furthermore,
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Table 1.1
Real-World Constraints

Constraint Description Examples (ranges)
Spatial The deployable assets have a fixed effective Surveillance camera (300-m fan-shaped footprint)

range — representable by a “footprint” Unmanned Aerial Vehicle (UAV) with an
projected onto the Earth electro-optical (EO) sensor (axe-blade footprint

proportional to UAV altitude)
Acoustic sensor (200-m circle)
Police patrol car area (10 square city blocks)

Temporal The deployable asset may only be deployed or Patrol car shifts (8 hrs)
effective at particular times -Immunization Clinics (8am – 7pm)

Thermal sensor (nighttime only)
Quantity The number of deployable assets is finite 7 cameras

1 UAV equipped with an EO sensor

if the camera is ineffective at night, deploying it in a hot spot that reflects nocturnal

disorder activity would be an inefficient use of resources. Finally, if there are only

seven cameras, there is a need not only to select the hot spots where historical activity

is matched with the spatial and temporal constraints but to choose the seven hot spots

against which deployment of resources will be most effective. The term actionable will

be used to indicate that constrained resources are available and appropriately matched

with the problem against which they will be deployed. This introduces a demand for

“need-driven” methods that not only group data based on spatial similarity among

events, but also identify more-actionable clusters given resource constraints (Ge et

al., 2007).

Actionable Hot Spots

This research presents the actionable hot spots (AHS) methodology. This is defined

as a hot spot having the same properties as a standard hot spot discussed earlier

(spatial dependence, higher-than-average concentration of events in the study area)

with one notable addition: An actionable hot spot is a hot spot of disorder activity

that has been determined to be appropriately sized, shaped, and synchronized with the

scarce resources that will be applied against it.
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There is a body of literature on constrained classification2 addressing spatial lim-

itations (Gordon, 1999), but since the research methods focus primarily on creat-

ing spatially contiguous clusters rather than considering resource constraints, these

methods were considered irrelevant to this research. Our methodology is not meant to

replace existing hot spot analysis methods — rather, it is an implementable extension

of existing methods that leverages standard statistical and innovative algorithms to

identify those hot spots that are actionable. The proposed approach is adaptable to

handle analysis that views problem areas at various levels: specific locations, streets,

neighborhoods, and large study areas. The result of using this extension is that the

decisionmaker is presented with a list of hot spots in which his/her scarce resources

can be effective at the appropriate level of analysis. Application of constraints yields

a reduced set of solutions that both are implementable and can be used to allocate

scarce resources more efficiently. Naturally, before imposing constraints on hot spots

that will render them actionable, an analyst may first apply a variety of standard

spatial analysis tools to better understand the underlying data,3 and their spatial

distribution, and perhaps test some hypotheses that he/she has established to ex-

plain the reasons behind the disorder activity. After the initial exploratory analysis

has been conducted and when constraints need to be introduced to guide resource

decisions, the AHS approach can be used.

Mathematical Representation of the Resource Allocation
Decision Problem

The objective of the AHS approach is to select the maximum number of expected

disorder events against which constrained resources can be deployed.4 The resource

2When the number and identity of the classes (groupings of data) are not known in advance,

the term unsupervised classification (Duda and Hart, 1973) is used although clustering is an equally

acceptable term and is more often used. Similarly, although the term constrained classification is

more widely used in the existing literature, it encompasses constrained clustering — the subject of

this research.
3Since relationships may change for a particular type of disorder activity across the study area

if the underlying environmental factors change (Haining, 2003), methods for addressing the problem

must vary accordingly.
4The authors acknowledge Professor Richard L. Church of the University of California (Santa

Barbara) for not only suggesting the need for a “clear, concise mathematical statement of the decision

making problem,” but also for proposing that the problem be presented in the manner used in this

report.
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allocation decisionmaking problem may be stated using the following notation:

Let
i = an index representing the location of a historical disorder event

j = an index representing the center point of the location where a resource

can be deployed

s = the geographic footprint within which a resource can serve, cover, or

reach a location

wi = a measure of importance of location i

q = the number of resources available to deter, disrupt, or prevent future

disorder events

yj = 1 if the resource is located at position j, 0 otherwise

xi = 1 if the disorder activity indexed by i is within the geographic

footprint of the actionable resource defined by s, 0 otherwise

di,j= 1 if the placement of the resource at position j will cause event i to

be within the geographic footprint of the resource, 0 otherwise.

Note that this notation reflects some of the known constraints of the scarce re-

sources that may be deployed against disorder events: the spatial constraint (s) and

the quantity constraint (q). The constrained resource allocation decision problem is

then

Maximize Z =
∑
i

wixi,

subject to

1.
∑

j di,jyj ≥ xi for each disorder event, i

2.
∑

j yj = q

3. yj ∈ {0,1} for each j

4. xi ∈ {0,1} for each i.

It is important to recognize that temporal issues are important for some hot spot

identification problems. It often is sensible to discount the importance of past events

relative to very recent events; then, one can define the importance parameter, wi, so

that the importance of past events is smaller than the importance of recent events.

Thus, the above model would tend to allocate resources toward areas of more-recent

events and tend to ignore older events. There are also circumstances where it makes
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sense to consider integrating the temporal constraints more fully in the model to

reflect how well the resource deployment would be expected to be synchronized with

future disorder events. We can accomplish this by modifying the above model as

follows:

Ti = {t | the temporal resource scheduling period encompassing event i}
xit = 1 if the disorder activity indexed by i is within the geographic

footprint of the actionable resource defined by s at time t, 0 otherwise

yjt = 1 if the resource is located at position j during period t, 0 otherwise

dijt= 1 if the placement of the resource at position j at time period t would cause

event i to be within the geographic footprint of the resource, 0 otherwise.

wit = the value of placing a resource within the geographical proximity

of event i at time period ti discounted to assign greater weight

to more-recent events than to older events.

The constrained resource allocation decision problem is then

Maximize Z =
∑
t∈Ti

∑
i

witxit

subject to

1.
∑

j dijtyjt ≥ xit for each disorder event i and scheduling period t

2.
∑

t

∑
j yjt = q

3. yjt ∈ {0,1} for each j

4.
∑

t xit ≤ 0 for each i.

The above model considers both geographic and temporal proximity when making

the resource allocation decision (Church, personal correspondence, April 12, 2010).

Note that the last constraint ensures that an event is counted only once during the

identification of actionable hot spots.5 Most important, this model reflects all the

known constraints of the scarce resources that may be deployed against disorder

events: the spatial constraint, the quantity constraint, and the temporal constraint.

5There are cases in which a resource can be used to provide some deterrence against future

events. In such cases, a more flexible, composite model might be introduced which would allocate

resources based on their value toward reducing both historical and future events. This is an area in

which we intend to conduct additional research in the future.



Introduction 7

An example of how this problem might be applied would be a resource alloca-

tion problem associated with maritime piracy (this example is further developed and

explained in this report’s “Case Studies” section found in Chapter Five). In that

example, the objective is to locate a naval destroyer at a point in the Gulf of Aden

at time t, yjt, where it is within 20 nautical miles of expected future piracy activities

and therefore able to deter, disrupt, or prevent those activities from occurring. The

goal of the resource allocation problem is then to select a position, yjt, where piracy

events have occurred at greater intensity than other areas in the Gulf of Aden (as

measured by
∑

t∈Ti

∑
i witxit, which encompasses a measure of importance for each

observation xit — reflecting the degree of synchronization between the expected time

when the naval destroyer may be deployed and the time when the future piracy events

might occur, with perhaps more emphasis put on areas where piracy events have oc-

curred more recently) and where those historical events are within the footprint of

the deployed resource. Note that, if historical events are discounted based on the

time that has elapsed since they occurred, more importance is given to recent events.

The implicit assumption is that areas where events have occurred recently in higher

concentrations than in the overall study area correspond to areas where additional

events are expected to occur during the resource deployment period.

Comparison with the Maximal Covering Location Problem

The above mathematical model, with the exception of consideration of the temporal

relevance portion, t, of the parameter wit, is the well-known Maximal Covering Loca-

tion Problem (MCLP), defined by Church and ReVelle (1974), extended by Church

(1984), and originally used to allocate fire stations to maximize coverage of demand

area. It has been applied in a variety of research areas — criminal analysis, health

care delivery, advertising, emergency services, and biological reserve design — and

off-the-shelf software implementations of the MCLP are readily available (Church,

personal correspondence, December 6, 2009).

As evidenced by the ease in which the AHS problem can be represented using

the MCLP problem formulation, the similarities between the two approaches are

obvious. The AHS approach does subtly differ from the MCLP in that it aims not

only to define locations for deployment of resources but to dynamically relocate them

as the underlying disorder activity changes in intensity or location. Locations of

disorder events, such as IED emplacement, crime, and maritime piracy, tend not be

stationary but rather to shift as new target opportunities arise and/or the deployment

of resources intended to interrupt disorder events causes the actors to avoid detection.
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By allowing the relative importance of disorder events to lessen over time (a more

formal method for defining the relative importance of the event, wit, will be discussed

in Chapter Four), the AHS version of the covering problem can also adapt to dynamic

spatial shifts in coverage demand and indicate areas where events are expected to

occur in the near future.

As the use of hot spot identification tools becomes more widely used to inform

resource allocation decisions, the hot spots identified using these common tools can

be the basis for assigning importance values to the MCLP. In that sense, AHS can be

seen not as an alternative approach to the MCLP, but rather as a way in which hot

spot identification tools can be leveraged to populate the parameter values used by

the MCLP. The AHS approach differs from that of the MCLP, not only in the way

in which coverage demand is determined based on the relative importance of disorder

events but also in the algorithms used. As will be seen in later chapters, the AHS

approach employs a simple, common hierarchical clustering method to identify hot

spots while the MCLP uses a simple integer-programming algorithm. It is unclear

at this time what a comparison of the relative performance of the two approaches

would yield for case studies reflecting common types of disorder events, but such a

comparison is one that we plan to undertake in the future. Similarly, we intend to

revisit the IED emplacement problem that motivated this research to determine how

well the MCLP approach performs and to better understand whether the counter-IED

user community would be amenable to using such an approach.

Research Questions

In this report, we address three research questions:

1. Can existing geospatial tools be modified to ensure that any identified hot spots

are actionable, given known spatial resource constraints?

2. Can identified actionable hot spots be prioritized so that the decisionmaker

can efficiently allocate scarce resources to yield maximum effectiveness against

problem areas?

3. Can the AHS methodology be applied to guide resource allocation in research

areas beyond the IED application for which it was originally developed?
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Report Organization

The remainder of this report is organized as follows. Chapter Two describes the

methodology used to identify hot spots subject to spatial resource constraints and

compares it with existing methods used by the geospatial analyst community. The

chapter also discusses methods for reducing the size of the data set to reduce vi-

sual clutter and computational complexity in order to facilitate identification of hot

spots. Chapter Three presents a method in which the clustering solutions generated

by standard algorithms may be improved to include observations that were excluded

from hot spots in an effort to increase computational efficiency. Chapter Four presents

a method by which historical and predicted incidents may be weighted in order to pri-

oritize the set of “actionable hot spots” to yield maximum effectiveness and describes

an approach to calibrating model parameters that better match resources with the

underlying problem being addressed and provides a means by which performance of

the AHS approach can be measured. Chapter Five presents three case studies that

span a broad range of research topics: maritime piracy, health care delivery, and law

enforcement. Chapter Six discusses the implications of this research and proposes

additional areas in which it may be applied.





CHAPTER TWO

Spatially Constrained Hot Spot Identification

As defined earlier, a hot spot is a special type of cluster where spatial dependence has

been established and a higher than average concentration of activity has occurred.

The standard set of hot spot analysis tools available in such geospatial software pack-

ages as CrimeStat�, GeoDataTM , and ArcGIS� (Cameron and Leitner, 2005) fall

into three categories:1

Thematic Mapping. Concentrations of events are color-coded in discrete geo-

graphic areas that correspond to administrative boundaries (e.g., ZIP codes,

Census tracts, police precincts).

Kernel Density Interpolation. A smooth surface is overlaid on a map reflecting

the concentration of actual events, and spaces between events are assigned in-

terpolated value based on the amount of nearby events.

Hierarchical Clustering. Events are grouped according to their nearness to other

events.

The three categories of geospatial hot spot identification techniques used here

are illustrated in Figure 2.1, reflecting maps of Boston burglary events in 1999 and

provided by Cameron and Leitner (2005). The first map reflects burglary rates per

100,000 residents by Census tract, the second map reflects the density per square

mile, and the final is a clustering of events contained within ellipses.2 Although the

1This is not an exhaustive list of hot spot analysis categories, but it does include those ap-

proaches that use a sample of automated identification of hot spots rather than subjective visual

interpretation.
2Since the purpose of this illustration is to simply compare the maps resulting from the various

approaches, the density and rate scales are not shown.

11



12 Resource-Constrained Spatial Hot Spot Identification

unit of analysis differs among approaches, they all yield clusters of events that may

be considered to be hot spots as long as the spatial dependence and concentration

properties are met (see the hot spot definition provided on page 2 in Chapter One). It

should be noted that the use of hierarchical clustering has been extensively discussed

in spatial analysis as it is one source of the well-known modifiable areal unit problem

(MAUP) (Openshaw, 1984) that may lead to misinterpretation of results due to the

arbitrary boundaries that are used to aggregate data. Application of AHS does not

resolve the MAUP, so those who interpret the results should consider that the problem

may still exist.

Figure 2.1
Boston Burglary Rates, 1999

RAND A8567-22

1 0 1 2

Miles

Thematic mapping Kernel density interpolation Hierarchical clustering

Source: Cameron and Leitner, 2005.

This chapter addresses the first research question: Can existing geospatial tools be

modified to ensure that any identified hot spots are actionable given known spatial re-

source constraints? For each of the listed categories of hot spot analysis, it is possible

to modify the underlying algorithms to generate clusters to allow spatial, temporal,

and quantity resource constraints to be applied. We found that one particular type of

hierarchical clustering method that is widely available to researchers in quantitative

fields — the complete-link method — can be leveraged to enforce spatial constraints on
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cluster sizes. We investigated various other clustering methods and determined that

the complete-link method was the one best suited for enforcing spatial constraints —

although other methods could be modified to yield a similar result.

Modifications to existing hot spot approaches can also be made that will allow

temporal constraints to be recognized during the process of hot spot identification;

by measuring the degree to which expected deployment of resources and historical

problem events are synchronized in a hot spot, it is possible to provide a prioritized

list of spatially constrained hot spots that may yield a more effective and efficient

use of scarce resources. Finally, where quantity constraints exist, resources can be

applied to the ordered list of priority hot spots until the resources are exhausted.

The appropriate enhancements that need to be made to existing approaches to turn

hot spots into actionable hot spots will be detailed in the remainder of this chapter.

In this chapter, the example data set shown in Table 2.1 will be used to illustrate

the underlying processes involved in standard hot spot identification approaches and

to demonstrate how the enhancements can be applied to yield spatially actionable

hot spots. This example set was carefully manufactured to be used throughout this

report and to highlight how the actionable hot spot identification and prioritization

process differs from standard approaches.

Table 2.1
Example Data, n = 7

Observation Longitude Latitude Category Poverty Rate Date Time
1 43.209 34.195 1 4.1% 12-Jun-09 07:38 PM
2 43.213 34.200 2 12.5% 09-Jun-09 11:39 PM
3 43.212 34.202 2 7.8% 05-Jun-09 08:15 AM
4 43.200 34.200 1 22.3% 21-Jun-09 10:12 PM
5 43.205 34.200 1 22.3% 23-Jun-09 02:31 AM
6 43.203 34.202 2 22.3% 18-Jun-09 01:32 PM
7 43.210 34.210 2 0.4% 01-Jul-09 09:36 AM

Each of the n = 7 data observations in the example contains six variables that

describe the notional disorder event; two spatial variables (longitude, latitude),3 a

3Data may be coded using other conventions, such as the Military Grid Reference System

(MGRS) or street addresses. In order to apply spatial constraints, these data must first be geo-

coded so they are represented by latitude and longitude. In this simplified analysis, it is assumed

that all observations lie on the earth — so elevation is 0 and can be ignored. While the decisions

about appropriate programming environments are left to the analyst, it would be wise to select an

environment that copes well with geospatial data. Using an environment that can easily interpret
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variable summarizing the category of event (e.g., a type of crime, a type of impro-

vised explosive device), one environmental variable (poverty rate), and two temporal

variables (date and time the event occurred). The spatial variables can be used to

plot the example data on a map (see Figure 2.2).

Hierarchical Clustering

Before introducing the spatial, temporal, and quantity constraints that make the hot

spots actionable, it is first useful to provide a basic understanding of how clusters are

built and hot spots are identified. Since the solution to enforcing spatial constraints

lies in the employment of the complete-link method, we first focus attention on the

basics of hierarchical clustering (which includes the complete-link method).

Figure 2.2
Unconstrained Clustering of Sample Data (single-link method)

RAND A8567-28

La
ti
tu

d
e

Longitude

34.210

34.190
43.21543.21043.20543.200

1 2

3

43.195 43.220

34.205

34.200

34.215

34.195
4

5

6

7

latitude and longitude coordinates, compute geographic distances, and easily manipulate data arrays

will save time and help to increase computational speed.
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The objective of clustering is to group observations by assigning an index to each

observation in a data set; the index indicates the cluster to which the observation

has been assigned. Existing statistical clustering algorithms use some definition of

nearness, association, or similarity4 between every pair of observations during the

process of assigning a cluster index. For example, if each of seven observations in

a data set — {1}, {2}, {3}, {4}, {5}, {6}, {7} — is to be assigned to a cluster index,

then one possible clustering outcome implied by the set of similarity values between

the pairs of the seven observations may be:

• two observations are given a group index of 1 and assigned to Cluster 1 =

({1}, {2})

• four of the remaining observations are indexed with a 2, indicating that they

belong to Cluster 2 = ({2}, {4}, {5}, {7})

• the remaining observation5 is indexed with a 3, indicating that it belongs to

Cluster 3 = ({6}).

Similarity between pairs of observations is representable by a single value based

on a comparison of each of the variables in an observation. It is convenient to trans-

form measures of similarity into ones of dissimilarity. The transformation may be

computed in any number of ways (e.g., a linear or more complicated transformation

of similarity), as long as the two have an inverse relationship.

Dissimilarity

A necessary component of a dissimilarity measure is the distance function d(xi,xj).

A class of distance functions useful for quantitative variables in k-dimensional space,

R
k, is given by the Minkowski metric distance function:6

4For ease of discussion, the general term similarity will be used interchangeably with association

or nearness.
5A cluster from a data set with n observations can be made up of anywhere between 1 and n

observations.
6A metric distance function, d(xi,xj), on all xi,xj ,xk ∈ Ω returns a non-negative real value

and satisfies the following properties:
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d(xi,xj) =

(
k∑

m=1

αγ
m|xi,m − xj,m|γ

)1/γ

(γ ≥ 1, αm ≥ 0).7 (2.1)

Creating the Distance Matrix

The pairwise distances for all pairs of n vertices, x = {x1, x2, ..., xn}, can be repre-

sented in an n× n distance matrix containing a maximum of
(
n
2

)
non-zero elements8

and can be expressed as follows:

D =

⎡
⎢⎢⎢⎢⎢⎣

0 d(x1,x2) · · · d(x1,xn−1) d(x1,xn)

d(x2,x1) 0 · · · d(x2,xn−1) d(x2,xn)
...

...
. . .

...
...

d(xn−1,x1) d(xn−1,x2) · · · 0 d(xn−1,xn)

d(xn,x1) d(xn,x2) · · · d(xn,xn−1) 0

⎤
⎥⎥⎥⎥⎥⎦ .

Since the constraints will be imposed on the spatial variables of the data, it is

convenient to first partition the data matrix, X, as follows:

X = S ∪Y,

where S represents the spatial variables (latitude (degrees), longitude (degrees)) and

Y includes all of the remaining k′ < k variables: S ∩Y = ∅.

∀xi,xj ,xk ∈ Ω,

i) (Identity) d(xi,xi) = 0

ii) (Positivity) d(xi,xj) > 0 unless xi = xj in which case d(xi,xj) = 0

iii) (Symmetry) d(xi,xj) = d(xj ,xi)

iv) (Triangle Inequality) d(xi,xj) ≤ d(xi,xk) + d(xk,xj).

The space Ω, together with the metric d, is called a metric space.
7γ is a non-negative exponent and αm is a non-negative value indicating how much weight the

individual feature m should contribute to the overall distance value. For γ=1 and αm = 1 ∀m,

the metric is the Manhattan distance and for γ=2 and αm = 1 ∀m, the metric is the well-known

Euclidean distance.
8Since this is a valid metric, the diagonal elements represented by d(xi,xi) are zero (some

programs have working precision limitations, so it may be necessary to force this property).
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The longitude and latitude for observation i are present in the spatial data matrix,

S = {longitudei, latitudei}, and the spatial distance between pairs of points is com-

puted using the Great Circle Distance (GCD)9 and represented by d(si, sj). For

example, the GCD between observations 1 and 2 in the example data is represented

as d(s1, s2) = d1,2 = 0.4604 km, reflecting how far apart these two observations lie

on the Earth. The GCD between all pairs of observations can also be computed as

d1,3 = 0.2889 km, d5,6 = 0.2409 km, etc. The full distance matrix, D, for the example

data representing only the spatial variables10 is

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.4604 0.3548 0.9983 1.1970 1.1271 1.4446

0.4604 0 0.2889 0.6674 0.7366 0.6819 1.2047

0.3548 0.2889 0 0.9552 0.9473 0.8286 1.0993

0.9983 0.6674 0.9552 0 0.6674 0.8268 1.6724

1.1970 0.7366 0.9473 0.6674 0 0.2409 1.1470

1.1271 0.6819 0.8286 0.8268 0.2409 0 0.9094

1.4446 1.2047 1.0993 1.6724 1.1470 0.9094 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The GCD is used for three reasons:

1. Computing distances between the latitude and longitude variables expressed in

degrees leads to distortions, since the spacing between degrees latitude depends

on where the observation lies on the Earth (a one-degree separation is much

smaller near the poles than near the Equator).

2. The spatial constraints of the resources to be applied later are normally mea-

sured in miles or kilometers, not degrees, so a common distance scale is required.

9Let R = Earth’s radius (mean radius = 6,371 km)

Δlat = (lati−latj) (the difference in degrees latitude)

Δlon = (loni−lonj) (the difference in degrees longitude)

ThenGCD =R·arctan
(√

[cos(Δlat) sin(Δlon)]2 + [cos(lati) sin(latj)− sin(lati) cos(latj) cos(Δlon)]2

sin(lati) sin(latj) + cos(lati) cos(latj) cos(Δlon)

)
.

10Clustering may be executed using any weighted subset of m = 1..., k′ variables, but the geo-

graphic constraint need only be applied to the spatial variables. A revised version of the Minkowski

distance metric for any pair of points in X may then be represented by

d(xi,xj) =

⎛
⎝αod(si, sj)

γ +
k′∑

m=1

αm|yi,m − yj,m|γ
⎞
⎠

1/γ

(γ ≥ 1, {αo, αm} ≥ 0). (2.2)
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3. It is a valid metric with properties that ease the computational burden associ-

ated with clustering.

Hierarchical Clustering with Spatial Constraints

Among hierarchical clustering algorithms,11 there exist divisive and agglomerative ap-

proaches. Divisive algorithms begin with all observations belonging to a single cluster

and then, guided by an explicit division rule, iteratively partition the observations

into smaller clusters, with each observation normally belonging to one-and-only-one

cluster.12 Hierarchical agglomerative clustering methods (HACMs) begin with an ini-

tial set of n clusters — each containing one of the n observations in the data set —

and then use a decision rule to iteratively merge clusters until the single, final cluster

contains all n observations. In this report, agglomerative clustering is used, since

its application to the resource-constraint problem is both more intuitive and easier

to implement. While there are several types of agglomerative hierarchical clustering

decision rules (also called “methods”) — single-link method, complete-link method,

Ward’s method, K-means method, centroid method, nearest neighbors method, etc.

(Gordon, 1999) — only the complete-link method allows strict enforcement of spatial

constraints on the cluster geometry that reflect the physical limits of the resource,

although other methods may be modified to yield the same solution.

The complete-link and single-link methods represent the two extremes of decision

rules that may be applied in the process of agglomerative clustering. Other methods

may yield clusters that also differ from the complete-link method, but the single-link

method has been chosen as an illustration. For each pair of distinct clusters in an

environment where the range of the resource has radius r (measured in kilometers),

and {Cp, Cq} are two clusters, the decision rules specifying whether merging of clusters

can occur are

Single− linkmethod :min{d(Cp, Cq)} ≤ 2r (2.3)

Complete− linkmethod :max{d(Cp, Cq)} ≤ 2r. (2.4)

11Aside from hierarchical clustering algorithms, other families of algorithms exist (Gordon, 1999),

but since none of these families possesses the properties that will allow spatial resource constraints

to be applied, they will not be discussed.
12There are algorithms that allow observation-sharing by clusters. In Chapter Three, we detail

an algorithm that allows observation-sharing.
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In the single-link method, this means that two clusters may be merged if the

distance between any observation in Cp and any observation in Cq is less than the

diameter (s= 2r) of the maximum range (represented as a circle) of the resource

that may be deployed to the cluster. To see how this method is inappropriate for

identifying clusters against which resources may be deployed, suppose there are three

vertices along a straight line separated by 1 km (see Figure 2.3). If the resource has

a radius of r = 0.5 km, the single-link method would allow all three vertices to be

merged into one cluster, since the minimum distance between any pair of vertices is

within the allowable diameter (s = 2r = 1 km). The dotted-line circle represents

the size of the cluster allowed by the single-link method and the solid-line circle

represents the maximum size of the resource. Therefore, unless explicitly modified to

test to enforce the spatial constraint, the single-link clustering method allows clusters

that exceed the range of the constrained resource and are not fully actionable.

Figure 2.3
Example of Single-Link Clustering

RAND A8567-4

1 km 1 km

On the other hand, the complete-link algorithm would not allow all three obser-

vations to be contained in a single cluster and would have a diameter no greater than

the limited range of the resource. This enforcement of the limits of the resource guar-

antees that all clusters identified are spatially actionable given a specified constraint.

This is because the rule for merging clusters can directly reflect the footprint of the
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resource. The rule is that two clusters may be merged if-and-only-if the distance

between every observation in one cluster and every observation in the cluster with

which it is to be merged is no greater than s = 2r. This ensures that every obser-

vation within the cluster falls within the footprint of the constrained resource (if the

footprint is circular); the results from application of the complete-link method would

appear as the solid circle in Figure 2.3. The final clusters that would result for the

example data using the single-link and complete-link methods are shown in Figures

2.4 and 2.5, respectively.

Figure 2.4
Clustering Results (single-link method)
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Other HACM algorithms that employ cluster-merging decision rules, such as

Ward’s method, nearest neighbors, and the K-means method (Gordon, 1999), do

not easily allow a strict limit on the diameter of the resource to be enforced. It

is possible that these methods may yield the same clustering outcomes for certain

data sets that respect known spatial resource constraints, but only the complete-link

method guarantees this condition will be met for all data sets. It may also be possible

to accomplish this result using nonhierarchical clustering techniques, but it was our
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Figure 2.5
Constrained Clustering Results (complete-link method)
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aim to suggest how spatial constraints may be applied when one or more of the three

commonly used categories of hot spot identification tools (thematic mapping, ker-

nel density interpolation, and hierarchical clustering) are selected by the user. For

that reason, we make the following recommendation: Enforcement of spatial con-

straints on clusters that are eligible to be identified as “hot spots” can

be achieved with certainty if the complete-link method of hierarchical ag-

glomerative clustering is used; without modification, other hierarchical

clustering methods may not guarantee this outcome.

Spatial Dependence

Establishing spatial dependence is one requirement for determining that a group of

observations is indeed a cluster (and also for labeling as “hot spots,” since these

are special cases of clusters), but the hierarchical clustering method described above

makes no explicit mention of this type of test. Before considering that an observa-

tion may join another cluster, it must be determined that it is closer than would be
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expected if the spacing had occurred randomly. Existing approaches apply the Near-

est Neighbor Index (NNI) test to accomplish this. The NNI compares the spatial

distances among the n observations in the study area with n randomly spaced obser-

vations in an area of the same size. The distance between an observation and other

observations in the data set divided by the average distance of the observations in

the randomly generated data set yields the NNI.

Values less than 1.0 indicate spatial dependence and allow the observation to be

considered for joining clusters — although a formal hypothesis may require that the

values be below a threshold smaller than 1.0. To ensure consistency with the complete-

link method, the comparison needs only a slight modification: The comparison of

actual observations with others in the data set should only include distances that are

no greater than s = 2r. This simple modification essentially ensures that identification

of observations that may join clusters is subject to the same spatial constraints that

will be enforced when clusters are actually built. For that reason, we make the

following recommendation: When spatial constraints are to be applied in the

building of clusters, tests for spatial dependence should also be modified

to reflect the constraints.

Augmenting Other Hot Spot Identification Approaches

Since the complete-link method is a form of hierarchical clustering used in hot spot

identification, the modifications required to enforce spatial constraints — and thereby

to ensure actionability — are minor. The decision rules for merging clusters need

only be updated to ensure that the resulting clusters do not exceed the range of the

resource. If direct modification cannot be made to existing proprietary algorithms,

this enforcement of spatial constraints can still be accomplished by taking the distance

matrix that emerges from the user’s software of choice and passing it through any

statistical software (e.g., R or SAS) that is capable of applying the complete-link

method. Another type of clustering available for building hot spots in some geospatial

software packages is the K-means clustering method. This approach (Chainey et al.,

2002) partitions the data into a user-defined number (K) of groups and encloses them

with ellipses. Note that this approach, although useful in some types of analysis, is

inconsistent with problems where resources are constrained, since the size of the

ellipses is unbounded by design.

Spatial constraints can also be applied when the kernel density approach is the
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preferred method for building clusters.13 However, since that approach essentially

spreads the observations over wider areas, the modifications required to implement

spatial constraints are more elaborate. Rather than representing observations as

points on a map, they are represented by shaded grid squares that surround the loca-

tion of the actual event. Figure 2.6 illustrates one example of how a single observation

is spread over several adjacent grid squares.

To apply spatial constraints, the location of each grid square must first be ex-

tracted. Then, instead of using the actual observations to build clusters, the coor-

dinates of the grid squares are used during the clustering process. Assuming that

the location of the grid square is represented by its center, clusters are built among

the pseudo-observations (the grid square centers) instead of the actual observations.

This is arguably a more computationally intensive exercise, yet it is required to ensure

that the spatial constraints are enforced with the complete-link method. Essentially,

this means that the building of clusters requires two separate analyses of the data:

one to apply the KDE and another to cluster the resulting grid squares using the

complete-link HACM.14

The final category of hot spot methods that needs to be addressed is thematic

13Kernel density estimation (KDE) is an increasingly popular method for visualizing spatial data

and identifying hot spots. This interpolation technique creates a relatively smooth, continuous,

color-coded surface that represents the number of events across the area. The basic mechanics of

this approach require that, rather than representing a historical event as a single observation on

a map, the event is spread evenly over a predefined area surrounding the actual event. The aim

is to alleviate the difficulty associated with visually interpreting areas with higher concentrations

of disorder events across the study area. The size of the surrounding area and the way that the

density of the actual spatial observation is allocated over that area are determined by a mathematical

function called a kernel :

k(s; b), b ≥ 0 such that

∫
k(s; b)ds = 1.

One familiar example is the normal kernel:

k(s; b) =
1√
2π

e
−s2

2b ,

which is a valid probability distribution that allocates the entirety of the event’s mass over a larger

area. The value of b is known as the bandwidth and indicates the size of the area over which the

density should be allocated.
14One additional modification is needed to ensure that the entire grid square is entirely enclosed

within the circle during the application of the HACM pass over the data. The effective radius will

need to be reduced by g
√
2, where g is the half-width of the grid square. This adjustment corrects

for the coarseness that results from gridding the data.
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Figure 2.6
KDE Representation of a Spatial Observation

RAND A8567-14

mapping. Clearly, unless the administrative boundaries of an area (or clusters of

adjacent areas) fit inside a circle of radius r, the spatial constraint will not be recog-

nized. For that reason, identification of actionable hot spots is possible for users of the

thematic mapping approach in only a limited number of cases. When the partitions

(or clusters of adjacent partitions) do fit neatly within the footprint of the deployable

resource, application of our approach would require that a catchment polygon (an

object surrounding the entire administrative boundary) first be created using either

an ellipse or convex hull.15 Figure 2.7 illustrates three types of catchment polygons

(from left to right): The first is a nonconvex hull,16 the middle diagram is a valid

convex hull, and the last diagram is an ellipse (also convex).

In summary, existing approaches to hot spot identification can be modified to allow

15A convex hull is defined as a polygon surrounding data points in which any line that can be

drawn between observations in the hull does not fall outside the polygon.
16It is nonconvex since a line between one pair of points lies outside the polygon.
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Figure 2.7
Catchment Methods for Tests of Clustering

RAND  A8567-3

Nonconvex hull Convex hull Ellipse (convex)

spatial constraints to be enforced so that the resulting areas under consideration for

application of resources by decisionmakers are appropriately sized to deter, disrupt,

or prevent future disorder events.

Spatially Constrained Resources with Noncircular Footprints

In the description of the AHS approach discussed thus far in this report, there has been

an explicit assumption that the resources have a circular footprint. Since that is rarely

the case, we now discuss application of spatial constraints when resource footprints

are noncircular. The footprint of the resource may be represented as a polygon

(convexity is not required; for example, some airborne assets project an “axe-blade”-

shape footprint on the Earth). A simple example of a polygon footprint would be

a trapezoid that may result from a stationary, elevated surveillance camera. Before

applying the complete-link HACM (or modified versions of the KDE or thematic

mapping approaches), the effective radius must be found. This is done by computing

the maximum distance between all pairs of points that define the polygon footprint.

This maximum value, 2rmax, becomes the effective diameter of the resource, which is
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used in the application of the complete-link HACM.

Once the clusters have been built using the complete-link HACM (or modified

versions of the KDE or thematic mapping approaches) assuming a circular footprint

with effective diameter 2rmax, a resource with a noncircular footprint may be super-

imposed over the cluster to check that all of the observations fall within the polygon

footprint. Figure 2.8 demonstrates how the selection of observations to be included

in the cluster would be identified. The center of the minimum volume enclosing circle

and the score-weighted cluster centroid are chosen as candidate rotation points. For

each rotation point, the following steps are executed:

1. The polygon is centered on the rotation point at an arbitrary angle.

2. A sub-cluster is identified that contains all observations that lie inside the su-

perimposed polygon.

3. The polygon is rotated by a small, fixed amount about the rotation point and

another sub-cluster is identified.

4. The rotation continues until the polygon is in its original position (Figure 2.8

demonstrates the effect of three different rotations [0, 135, and 180 degrees]).

5. Each sub-cluster containing at least two observations is identified as a candidate

hot spot.

Figure 2.8
Polygon Spatial Constraint Fitting

RAND A8567-16
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This approach is most useful when the analyst is looking for clusters over neighbor-

hoods or large areas. When the level of analysis involves a linear search area (such as

identifying linear streets with a large concentration of disorder events), this approach

is inefficient. A simpler approach for linear-type searches would be to first build linear

clusters using the algorithms supplied in geospatial software and superimposing rect-

angles over the resulting linear clusters. Finally, since it is computationally costly to

search for hot spots that fit within noncircular footprints using the rotation method

we described, extensions of our research will investigate more-efficient methods for

addressing this problem.

Data Reduction

The extensions to existing approaches described so far require a significant increase in

computational burden to execute. One solution — closely linked to the application of

temporal constraints to be described in the next chapter — is to remove observations

that are irrelevant to the analysis. A leaner data set results in far fewer computa-

tions (calculation of pairwise distances, assessing merges, etc.) and greater efficiency.

Observations may be removed from the analysis for three reasons:

Temporal. In some research areas, there may be some reason to believe that some

historical observations are simply too old to be included in the analysis. For

example, Figure 2.9 shows the historical piracy events in the Gulf of Aden

(GoA) and coastal Somalia between 2004 and 2008, while Figure 2.10 shows

the piracy events in the same region for only July through December 2008.

Clearly, the pirates have begun to demonstrate a more recent preference for

conducting attacks off the coast of Yemen. For that reason, identification of

actionable piracy hot spots should take this shift in preferences into account

and reduce the weight of — or omit — observations that are more indicative of

older spatial patterns in piracy attacks.

Categorical. Some observations in the data set may pertain to phenomena that are

not being considered for resource allocation by the decisionmaker with scarce

resources. For example, if the objective of the deployment of resources is to re-

duce cases of burglary, perhaps the observations that indicate cases of homicide

can be omitted from the analysis (unless a correlation between crime categories

in certain areas is a useful piece of information).
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Spatial. With a spatial constraint implied by an actionable resource radius of r and

the knowledge that a cluster must have more than one observation to be consid-

ered a hot spot, an observation that is not within s = 2r of any other observation

cannot be part of a hot spot and can be removed. Since this requires that the

pairwise distances be computed first, the gains in computational efficiency are

less than in cases where data are removed for other reasons.

Figure 2.9
Piracy Incidents in GoA/Somali Coast, 2004 – 2008

RAND A8567-25
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Summary

This chapter has demonstrated that the combination of existing statistical methods

and our new innovations can be used to identify hot spots that are spatially actionable.

Hot spot identification methods used by the geospatial analysts include a broader set

of approaches that are selected based on their appropriateness for understanding the
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Figure 2.10
Piracy Incidents in GoA/Somali Coast, July – December 2008
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underlying problems. However, it has been shown that our approach can augment

these existing approaches and allow the user to both employ his/her tool of choice

and enforce spatial constraints. So, with enhancements, the geospatial analyst can

identify hot spots based on the needs of the end-user and help guide resource allocation

decisions.





CHAPTER THREE

Cluster Point-Sharing

Due to the computational burden associated with hierarchical clustering, most

existing algorithms yield suboptimal solutions. For data sets with n data points

or observations, the operations that would be required to search over all possible

clustering outcomes for an optimal solution is proportional to n-factorial (n!). Even

with relatively small n, the required computing time becomes unmanageable and

shortcuts need to be taken. For that reason, known implementations of hierarchi-

cal clustering use a “one-step ahead” strategy that results in the inability to reverse

merges. These implementations iteratively build clusters with the stipulation that,

once an observation joins a cluster, it cannot be separated from that cluster through-

out future iterations. The merges of clusters are chosen to be the best during the

iteration in which they occur, but the inability to reverse a decision limits the al-

gorithms’ ability to provide a “better” clustering as more information about the

structure of the data emerges in later iterations.

To mitigate the problems associated with the one-step-ahead approach, an al-

gorithm was created to perform a second pass through the clusters generated by

the complete-link HACM, to determine whether additional observations could be ex-

tracted from other clusters. With a resource that is constrained to have a diameter

of s = 2r, the basic idea is to expand clusters to include observations belonging to

other clusters as long as the constraint on the diameter is not violated. This will

allow the analyst to build clusters that contain more observations and, hence, are

considered “hotter” spots. The end result is that the identified clusters represent a

better summary of the underlying patterns in the data rather than the artificiality

of the algorithms used to generate them. The approach allows observations to be

shared by more than one cluster. To some observers, this may violate the notion

(and hence the purpose) of clustering. However, for some applications, it is likely

31
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that these observations may indeed have relevance to the analysis of both clusters

to which they may belong. If the intent is to build actionable clusters (particularly

those defined as “hot spots”), the proposed approach provides a reasonable balance

between computational complexity and utility.

To illustrate how the algorithm functions, we again use the same example data set

that we used in Chapter Two. The complete-link HACM yielded clusters (shown in

Figure 3.1) that respect the physical constraints of the resource with maximum radius

r. The algorithm begins with this result and attempts to find a clustering solution

that shares observations among clusters while preserving the spatial constraint.

Figure 3.1
Constrained Clustering Results (complete-link method)
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The Second-Pass Approach

This section describes the mechanics of the two-pass algorithm. The first pass applies

the HACM and yields a set of clusters in which each observation belongs to only one

of the identified clusters.
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Suppose that the original data set contained n spatial observations and that, in the

course of the complete-link clustering process — and subsequent cutting to consider

only those clusters with a maximum internal distance of s = 2r — m observations

(m ≤ n) joined a cluster. The first step in the process is to sort the data set, X,

so that the first m rows of the Θc matrix reflect the m observations in cluster c.

Based on the results from the first-pass clustering of the example data shown, the

resulting cluster assignments are C8 = {x4,x5,x6}, C9 = {x1,x2,x3}, and C7 = {x7}.
Focusing on C8, the sorted data matrix, X′

8, is shown in Table 3.1.

Table 3.1
Example Data Resorted for Cluster 8

Cluster Sorted Obs. Original Obs. Longitude Latitude Category Poverty Rate Date Time
8 4 1 43.209 34.195 1 4.1% 12-Jun-09 07:38 PM
8 5 2 43.213 34.200 2 12.5% 09-Jun-09 11:39 PM
8 6 3 43.212 34.202 2 7.8% 05-Jun-09 08:15 AM
9 1 4 43.200 34.200 1 22.3% 21-Jun-09 10:12 PM
9 2 5 43.205 34.200 1 22.3% 23-Jun-09 02:31 AM
9 3 6 43.203 34.202 2 22.3% 18-Jun-09 01:32 PM
7 7 7 43.210 34.210 2 0.4% 01-Jul-09 09:36 AM

For the cth cluster, let Θc describe the relationship between each of the m obser-

vations in cluster c and each of the observations in all other clusters. Then, for all i, j

in n, let θ(x′
i,x

′
j) be a binary operator applied to the sorted data matrix1 X′, where

θ(x′
i,x

′
j) =

{
0 if d(x′

i,x
′
j) > 2r

1 if d(x′
i,x

′
j) ≤ 2r.

The resulting matrix of values after application of the θ operator is:

Θc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ(x′
1,x

′
1) · · · θ(x′

1,x
′
m) θ(x′

1,x
′
m+1) · · · θ(x′

1,x
′
n)

...
. . .

...
...

. . .
...

θ(x′
m,x

′
1) · · · θ(x′

m,x
′
m) θ(x′

m,x
′
m+1) · · · θ(x′

m,x
′
n)

θ(x′
m+1,x

′
1) · · · θ(x′

m+1,x
′
m) θ(x′

m+1,x
′
m+1) · · · θ(x′

m+1,x
′
n)

...
. . .

...
...

. . .
...

θ(x′
n,x

′
1) · · · θ(x′

n,x
′
m) θ(x′

n,x
′
m+1) · · · θ(x′

n,x
′
n)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

1Since the data have been sorted, the index reflects the observation number of the sorted data.

For example, observation x4 is now x′
1.
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Θc may be decomposed into four sub-matrixes that will be discussed separately

below. (
A(c) B(c)

BT (c) E(c)

)

Sub-matrix A(c)

A is an m × m sub-matrix that summarizes the distances between observations in

the cluster on which the focus is applied — the cth cluster. Since the first pass of

clustering necessarily includes only those observations that are within s = 2r of all

other observations in the cluster, all of the elements are equal to 1. For example, the

distance matrix of Great Circle Distances for X′
8 is

D′
8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0000 0.6674 0.8268 0.9983 0.6674 0.9552 1.6724

0.6674 0.0000 0.2409 1.1970 0.7366 0.9473 1.1470

0.8268 0.2409 0.0000 1.1271 0.6819 0.8286 0.9094

0.9983 1.1970 1.1271 0.0000 0.4604 0.3548 1.4446

0.6674 0.7366 0.6819 0.4604 0.0000 0.2889 1.2047

0.9552 0.9473 0.8286 0.3548 0.2889 0.0000 1.0993

1.6724 1.1470 0.9094 1.4446 1.2047 1.0993 0.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and so the Θ8 matrix is given by:

Θ8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 0

1 1 1 0 1 1 0

1 1 1 0 1 1 1

1 0 0 1 1 1 0

1 1 1 1 1 1 0

1 1 1 1 1 1 0

0 0 1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

of which sub-matrix A is

A =

⎡
⎣ θ(x′

1, x
′
1) θ(x′

1, x
′
2) θ(x′

1, x
′
3)

θ(x′
2, x

′
1) θ(x′

2, x
′
2) θ(x′

2, x
′
3)

θ(x′
3, x

′
1) θ(x′

3, x
′
2) θ(x′

3, x
′
3)

⎤
⎦ =

⎡
⎣ θ(x4, x4) θ(x4, x5) θ(x4, x6)

θ(x5, x4) θ(x5, x5) θ(x5, x6)

θ(x6, x4) θ(x6, x5) θ(x6, x6)

⎤
⎦ =

⎡
⎣ 1 1 1

1 1 1

1 1 1

⎤
⎦ .
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Sub-matrixes B(c),BT (c)

Sub-matrixB(c) yields the same information asBT (c). Since the matrix is symmetric,

the elements are simply transpositions of one another, so only B(c) will be discussed.

The binary value in the ith row and jth column of B(c) indicates whether the GCD

between observation i in the cth cluster and observation j are within s = 2r of one

another. For each of the j (j = 1, ...(n − m)) columns of BT (c), a sum can be

computed:

Sc(j) =
n−m∑
i=1

bi,j.

If Sc(j) = m, the GCD between the jth observation and every observation in

Cc is no greater than s = 2r. So, the observation may join the cluster without

violating the spatial constraint. In C8, S8(2) and S8(3) both equal m and so the

cluster C8 = {x2,x3,x4,x5,x6} is potentially a cluster with a diameter no greater

than s = 2r = 1 km and may therefore be actionable given the spatial constraint.

However, an additional requirement for both observations x2 and x3 to join C8 is

that they be within s = 2r of one another — it is for this reason that they are only

potential additions to the cluster. The final sub-matrix, E(c), indicates whether this

additional requirement is met.

Sub-matrix E(c)

Sub-matrix E(c) summarizes the GCD between every observation that has not been

assigned to Cc during the first pass. For each of the observations in the set iden-

tified to be a potential addition to Cc, based on the operator Sc(j) applied to the

columns of B(c), it is now possible to determine which subsets can be added to Cc
without violating the distance constraint implied by radius r. If K is the set of h

observations identified as potential additions to Cc, then let E′(c) be the sub-matrix

of E(c) containing only those rows and columns pertaining to the elements of K. For

example, potential additions to C8 were identified — by the process applied to B(c)

— to include x2 and x3. Since

E8 =

⎡
⎢⎢⎢⎣

1 1 1 0

1 1 1 0

1 1 1 0

0 0 0 1

⎤
⎥⎥⎥⎦ ,
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E′
8 includes only those rows and columns of E8 that summarize the distances between

x2 and x3:

E′
8 =

[
1 1

1 1

]
.

There are 2h distinct patterns of 0’s and 1’s generated by concatenating the rows

of E′
c (for example, both rows of E′

8 yield pattern 11, so there is only one distinct

pattern — the other possible patterns are 00, 01, and 10).

Selecting Observations for Sharing

For each distinct pattern yielded by E′
c, the next step of the two-pass algorithm

requires that a new cluster be built by merging Cc with the other observations indi-

cated by a value of 1 in the pattern. For example, suppose that three observations

(xi,xj,xk) have been identified via the summation operator Sc(j) to be potential

additions to Cc and that

E′
c =

⎡
⎣ 1 1 0

1 1 1

0 1 0

⎤
⎦ ,

yielding distinct patterns 110, 111, and 010. Then three possible clusters that respect

the spatial limits on the range of the resource are possible:

• C∗
c = {Cc,xi,xj}

• C∗∗
c = {Cc,xi,xj,xk}

• C∗∗∗
c = {Cc,xj}.

Typically, the one with the most new observations (C∗∗
c in the example) would be

the most appealing. When it becomes necessary to choose between two equally sized

clusters, the cluster that produces the highest score after weighting (for instance, if

time is the determining factor of the weighting function, then more recent observations

would be favored over older ones) is chosen (see Chapter Two for a discussion of

weighting). In order to yield the two-pass cluster with the most observations, the list

of distinct patterns should be sorted and processed in descending order according to

the pattern with the most 1’s. Going back to the example of C8, there is only one

distinct pattern, 11, indicating that both x2 and x3 are within s = 2r of one another
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and also within s = 2r of every observation in C8. So the second-pass algorithm yields

a cluster with five observations (x2,x3,x4,x5,x6) instead of the three observations

found in the first pass. Hence the second-pass algorithm allows the analyst to identify

clusters with more activity that may still be actionable given the spatially constrained

resource.

Iteration over All Clusters Identified in the First Pass

For every cluster identified in the first pass containing more than one observation,

this process should be repeated. Clusters with one observation need not be processed

since, if that observation could have joined a cluster during the first pass, it would

have already been merged. Completing the example of the example data set, the

second pass would be run on the cluster C9 = {x1,x2,x3}.
The resorted data matrix is

D′
9 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.4604 0.3548 0.9983 1.1970 1.1271 1.4446

0.4604 0 0.2889 0.6674 0.7366 0.6819 1.2047

0.3548 0.2889 0 0.9552 0.9473 0.8286 1.0993

0.9983 0.6674 0.9552 0 0.6674 0.8268 1.6724

1.1970 0.7366 0.9473 0.6674 0 0.2409 1.1470

1.1271 0.6819 0.8286 0.8268 0.2409 0 0.9094

1.4446 1.2047 1.0993 1.6724 1.1470 0.9094 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and the matrix of binary indicators of eligibility for joining C9 is:

Θ9 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0

1 1 1 1 1 1 0

1 1 1 1 1 1 0

1 1 1 1 1 1 0

0 1 1 1 1 1 0

0 1 1 1 1 1 1

0 0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This indicates that x4 may join the cluster without violating the resource con-

straint yielding the final clusters:

• C7 = {x7}
• C∗

8 = {x2,x3,x4,x5,x6}



38 Resource-Constrained Spatial Hot Spot Identification

• C∗
9 = {x1,x2,x3,x4}.

The final two-pass clustering results are shown in Figure 3.2.

Figure 3.2
Final Improved Constrained Clustering
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CHAPTER FOUR

Hot Spot Prioritization and Performance
Measurement

After imposing the spatial constraints and establishing that spatial dependence is

present in identified clusters, the user will likely be left with many clusters. Three

natural questions arise:

1. Which clusters are hot spots?

2. Which clusters are hotter than others?

3. Given the resource quantity constraints, against which hot spots should re-

sources be deployed to yield maximum benefit?

This chapter answers the second research question: Can identified actionable hot

spots be prioritized so that the decisionmaker can efficiently allocate scarce resources

to yield maximum effectiveness against problem areas? In the first part of the chapter,

we determine which spatially constrained clusters are actually hot spots. Following

that determination, we prioritize the remaining actionable hot spots according to how

well the historical events are synchronized with the expected resource deployment

that is subject to temporal constraints. In the last part of this chapter, we present a

calibration process that helps the analyst exploit identifiable patterns in the disorder

activity to propose resource deployment solutions that are expected to yield maximum

effectiveness against the problem being addressed.

From Actionable Clusters to Actionable Hot Spots

To be considered a hot spot, we earlier noted that a cluster must have two properties:

39



40 Resource-Constrained Spatial Hot Spot Identification

• Spatial dependence (indicating that the observations in the cluster are related

to each other) must be established using statistical testing; with a reasonable

amount of confidence, it can be determined that the clustering pattern could

not have occurred randomly.

• The concentration of problem events in the cluster is greater than the average

concentration of events in other parts of the study area.

Since the first property has already been established during the selection of obser-

vations that joined the spatially constrained clusters, for a cluster to be considered

an actionable hot spot, we need only establish that the concentration of events in

the clusters is greater than other parts of the study area. The standard approach to

establishing a large concentration would calculate two concentration values

1. Across the study area — the total number of events in the study area is divided

by the total size of the area size (in square kilometers or miles) and the resulting

concentration is denoted by c1.

2. Within each cluster — the total number of events in a cluster is divided by the

total size of the cluster (using the same scale that was used for the calculation

of the study area) to yield a cluster concentration denoted by c2.

The cluster concentration is then divided by the study area concentration to yield

a value C = c2/c1. If C is greater than 1.0 + α (where α > 0 may be defined, as

needed, to highlight those hot spots that are distinctly different from the average

density in the study area), the cluster has a higher relative concentration and is

considered to be a hot spot. Actionable hot spots with higher relative concentration

values are therefore considered to be “hotter” than hot spots with lower relative

concentration values. Within the community of analysts studying hot spots, there

is an ongoing debate (see Levine, 2008) over the appropriate way to express the size

of the study area. The analyst may use one of various catchment approaches —

convex hull, an enclosing ellipse, a rectangle bounding all observations, or the actual

jurisdiction in which the resources are to be deployed — that he/she determines to

be most appropriate, but the size of the cluster in the actionable hot spot method

is not subject to debate. Whether disorder events occur in all parts of an actionable

cluster is irrelevant — the effective size of the cluster must reflect the resource to be

deployed, not only the area in which events have historically occurred. We make the

following recommendation: When computing the concentration of events in
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a spatially constrained cluster to determine whether it meets the criteria

for establishment as a valid actionable hot spot, the size of the area must

reflect the entire coverage area of the resource to be deployed.

Prioritization

Once actionable clusters have been determined to be actionable hot spots, their total

number may exceed the resource quantity constraints of the decisionmaker. There-

fore, the actionable hot spots that are candidates for deploying resources must be

prioritized in some fashion. Any reasonable prioritization must consider how effective

the resource would be if deployed. Since the purpose of prioritization is to match

the spatially constrained resources available in limited quantities with the problem,

the prioritization should reflect the objective of the resource deployment and — if

relevant to achieving that objective — the temporal constraints. For example, if the

objective is to reduce burglary in a small area and the deployable resource is a police

patrol car available during the midnight – 8am shift, it would make little sense to

put emphasis on historical events that occur during times when the patrol car is not

active. A prioritization approach should put more emphasis on disorder events that

occur at roughly the same time as the resource is deployed.

For a given objective function and known constraints, this report proposes that

each candidate actionable hot spot be weighted according to how well it is synchro-

nized with the anticipated deployment of resources meant to combat future disorder

events. Additionally, the weighting process may be modified to put more emphasis

on recent activity and less on historical events that have occurred in the more distant

past. In the previous chapter, we gave the example of how the spatial attack patterns

of piracy in the Gulf of Aden and coastal Somalia shifted over time. To account for

that outcome, we recommended that older events be down-weighted or removed from

the analysis. One possible family of weighting schemes that can apply differential

weights to events based on their age is the simple exponential function. If wi is the

measure of importance of the ith observation and Ai is the age of that observation

(the time difference between the expected initiation of resource deployment and the

occurrence of the historical event), the temporally weighted measure of importance is

wit = e−φAi , where φ,Ai ≥ 0.

Some discount functions that result from various values of φ are shown in Figure

4.1; note that for φ = 0, every observation receives a weight of 1.0 and is equivalent
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to not weighting at all.

Figure 4.1
Temporal Discount Functions
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The actual value of φ reflecting the degree to which the cluster of the disorder

event moves over time does not need to be established by the analyst. Rather, it

can be found through an experimentation process that will be discussed later in this

chapter.

The synchronization with the expected time of resource deployment can also be

found through experimentation, but the basic shape of the weighting function should

reflect knowledge of the deployment patterns. Two examples of how a weighting

function may be constructed are shown in Figures 4.2 and 4.3. In Figure 4.2, the

deployment of resources is expected to be in eight-hour shifts. The red weighting

function yields weights of 1.0 for all historical events that have occurred during the

same time window as the expected resource deployment over a one-week period (the

weighting may exceed seven days in this notional example). The blue dotted line

reflects a similar deployment schedule but one in which the observation weights are
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discounted over time to reflect the age of the event. Figure 4.3 shows a smoother

type of weighting function (this one assumes a weekly deployment of resources, so the

period of the wave is seven days). This may be more appropriate when events that fall

outside of the resource deployment window are considered to have some importance

but are given lesser weight than those that do fall inside the window.

Figure 4.2
Step-Function Temporal Prioritization
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Weighting of observations should reflect temporal constraints to ensure synchro-

nization with the resource under consideration for deployment. There are cases where

no temporal constraints exist, but the objective function (defined in Chapter One

beginning on page 4) suggests that differential weights be given to observations to

ensure that the deployment of resources is correctly matched with the problem. For

example, if the objective of a health care provider is to equalize compliance rates for

colon cancer screening across racial/ethnic groups, the analyst could give weights to

groups proportional to their historical rates of noncompliance. This would give more

weight to observations in clusters populated by individuals with the lowest compli-

ance rates and less to those areas populated by groups who have been historically



44 Resource-Constrained Spatial Hot Spot Identification

Figure 4.3
Smooth Temporal Prioritization
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more compliant.

Once each observation has been appropriately weighted, a cluster score may be

computed which is simply the sum of the weights in the hot spot. Prioritization

then becomes simple: The actionable hot spots are ordered based on their marginal

contribution to a cumulative total score (the total cumulative score will be equal to the

sum of the weights for distinct events that fall within identified hot spots). Resources

should then be deployed first against the actionable hot spot with the highest marginal

contribution to the cumulative score, followed by the one with the second highest

score, etc., until the deployable resources are depleted. Since it is possible that hot

spots may overlap and so events may be counted multiple times, only distinct events

(those not already included in hot spots with higher marginal contributions) are

counted toward marginal cluster scores. Of course, all of the events in the highest-

ranking hot spot will be used in marginal score — the process of omitting nondistinct

observations need only be applied to subsequent hot spots in order to accurately
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measure the marginal values. We make the following recommendation: Among all

hot spots deemed to be actionable given constraints, the ones that are best

able to be addressed (because of synchronization of historical activity with

expected deployment of resources and/or because they are more consistent

with the objective of the introduction of resources) should be selected for

resource deployment until resources are depleted.

Measuring Expected Performance

Although it is not possible to know how effective the resource will be once deployed,

it is possible to use historical data to see if — at the very least — the deployment

of resources based on the application of the AHS method would have correctly se-

lected actionable areas in which future events occur during the time window when

the resource would have been deployed. The performance metric is then the total

number of events that occur within the recommended actionable hot spot during the

deployment period, adjusted to remove any observations that occur in the interior of

more than one overlapping hot spot.

For example, if the objective is to prevent burglary by sending out patrol cars to

hot spots during the midnight – 8am shift (temporal constraint), and if the cars have

a patrol area of ten square city blocks (spatial constraint), and there are two patrol

cars available for deployment for a period of seven days (quantity constraint), the

computation of the metric would be done according to the following steps:

1. If the time when the resource deployment will begin is represented by t, weighted

actionable hot spots (given the constraints) would be computed using all data

available prior to t (perhaps a little earlier to account for the time to analyze

historical data and prepare the resources for deployment).

2. The actionable hot spot with the highest weighted marginal scores would be

selected for action, followed by the hot spot with the second-highest weighted

marginal score (after removing events that are also counted in the highest-

weighted hot spot).

3. For the next seven days beginning at time t, the number of burglary events

that occur within each hot spot during the midnight – 8am period is counted

— this is the expected performance metric. Should an event occur within more

than one nominated hot spot (this occurs when hot spots overlap), each distinct

event is only counted once.
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With that metric, it is now possible to see if the selection of actionable hot spots

was successful and by how much. This approach will allow decisionmakers comparing

alternative resources for deployment to test the number of future events they would

have been in the position to deter, disrupt, or prevent for each deployable asset type.

Therefore, the policymaker can test the AHS performance metric on historical

data to yield an expected level of effectiveness and choose the deployable

resources that would have been most effective if deployed.

The major drawback of this approach is that, since the intervention is not ac-

tually observed, the metric does not reflect actual effectiveness but rather expected

effectiveness. However, since the future cannot be observed until it happens, this is

a reasonable metric for estimating effectiveness and comparing the potential impact

that alternative resources might return. One other drawback that is not unique to the

AHS method is that, in an adversarial environment, the source of the disorder may

adapt to actual resource deployment to prevent detection. For example, the burglars

who operate in hot spots against which resources are deployed during the deployment

hours may shift their temporal pattern or displace to another area not subject to pre-

dictable police patrols. Research into this action-reaction cycle is ongoing at RAND

and we expect that later reports on the AHS approach will reflect this phenomenon.

Calibration

One of the advantages of the AHS methodology that we developed is the extent

to which the general approach can be tailored to a specific area and set of circum-

stances. The spatial, temporal, and quantity constraints on the deployable resources

are known, but two other input parameters that yield larger expected effectiveness in

hot spots may be found through experimentation:

• The minimum number of observations required to be considered a hot spot.

Although the default value in existing geospatial software is 5, this value may

not be appropriate for the phenomena being studied or the local area in which

it is used to identify actionable hot spots. For example, once some criminals

decide to create disorder in a selected neighborhood, they may hit ten times

before moving on to another area. This does not imply that the appropriate

number of observations required be ten, rather it suggests that smaller numbers

be used; if the criminal strikes occur in groups of ten, there is no reason to

wait very long before deploying resources to intercept him. After all, he has
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historically shown that he is likely to commit eight more crimes in the same

neighborhood.

• The temporal discount function, φ. Activity that is persistent in certain areas

would be given higher weights if the value of φ were small or zero (note that

for φ = 0, all observation weights are 1.0 and so the “score” is simply the num-

ber of events in that hot spot). Higher values of φ are more appropriate when

the spatial clustering of events tends to move over time. Note also that the

number of days of historical behavior that should be included in the analysis

can be reflected in the discount function by simply assigning zero weights for

observations whose age exceeds a certain threshold. However, it would be com-

putationally more efficient to simply remove those observations from the data

set.

With the historical data as a training set, various combinations of these two

parameters can be used to determine which combination returns the highest value

of the performance metric. This evaluation with the training set of historical data

serves three purposes: (1) It tunes the parameters to be as relevant as possible in

the particular geographic region where this methodology is being deployed, (2) it

provides a deeper understanding of the spatial and temporal patterns, (3) through

this tuning, the algorithm can detect changes in environmental conditions. Once the

combination of input parameters that returns the highest performance metric has

been determined, it should be used to identify actionable hot spots. For a given

set of constrained resources, not only does the AHS approach identify and prioritize

hot spots for action, but the hot spots nominated for resource deployment take into

account both the temporal and spatial dynamics of the historical disorder events.

Cross-Validation

As in most data analysis exercises, it is important that the resulting parameter es-

timates and hot spot nominations are not the result of overfitting the data to the

historical data set. Careful cross-validation withholds part of the historical data

during the parameter calibration phase of the analysis and then evaluates the per-

formance of the suggested resource allocation against those events that are not part

of the data that were used in the calibratation. Since the spatial relationships in the

data are fundamental to the generation of constrained hot spots, our proposed cali-

bration used a temporal cross-validation. The cross-validation approach used in our
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calibration process (discussed earlier) can be more formally expressed in the following

steps:

1. For data indexed sequentially by a time index (t = 1, 2, ..., T ), we first partition

the data into approximately equal halves; assuming T is an even number of time

steps, the partitions are t1 = 1, 2, ..., T/2 and t2 = T/2+1, T/2+2, ..., T . With

this partitioning, t1 represents the time window containing observations used

in the training set and t2 represents the time window containing observations

used in the sample set against which performance was measured.

2. The sample set, t2, is then divided into equal sub-partitions representing the

time length in which a set of nominated hot spots is assumed to be deployed in

order to measure how many disorder events occurred within those nominated hot

spots. If d is the number of days in which the resource is expected to be deployed

against a nominated hot spot, then monitoring occurs for a total of p = T/2d

deployment periods in the training set, where each of the p deployment periods

contains d time steps. Using the calibration parameters that were generated in

the training phase with the data in time window t1, a new set of hot spots is

nominated for every d time step within t2.

3. For the hot spots nominated at the end of the k · dth (k = 0, ..., p − 1) time

step following T/2, the number of events that fall interior to the nominated hot

spot(s) in the deployment period — that is, within the next d time steps — is

counted and used to compute the performance metric.

As an example of how this cross-validation is performed in the maritime piracy

case study (to be explained in greater detail in Chapter Five), refer to Figure 4.4.

The historical data contained 30 weeks = 210 days of historical piracy events in

the Gulf of Aden. The training set was based on the first 15 weeks (t1 = June 4,

2008 – September 16, 2008) and the sample set contained the second 15 weeks of

data (t2 = September 17, 2008 – December 31, 2008). A set of input parameters

(temporal discount function and minimum set of observations required to establish a

hot spot) was set for the training set, t1, and used to nominate an actionable hot spot

(the quantity constraint is assumed to be equal to one resource) on September 17,

2008. During the next d = 7 days, the nominated hot spot was monitored to see how

many piracy events occurred within that nominated hot spot. Seven days later (on

September 24, 2008), another hot spot was nominated using the data from June 4,

2008 through September 23, 2008 and that hot spot was monitored for the next d = 7
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Figure 4.4
Cross-Validation and Effectiveness Measurement Time LinePIRACY EXAMPLE

Calibration

15 weeks

Monitored 7 days

June 4, 2008 September 17, 2008

Hot spot selected

... for 15 weeks

Monitored 7 days

Hot spot selected
Monitored 7 days

Hot spot selected

days. Overall, this process was repeated p = 15 times — resulting in a total of 105

days (7 days × 15 periods) of monitoring. The performance metric is then the number

of piracy events that occurred within the distinct hot spots only during the seven-day

period in which the individual hot spots were assumed to have resources available to

intercept piracy events. This process is then repeated using several different sets of

input parameters to determine which set yields the best performance. The best set

of parameters from this analysis would then be used to nominate hot spots during an

actual resource deployment decision process.

Summary

This chapter has demonstrated that our methodology can be used to identify hot spots

against which resources can be deployed. It also provided a method for determining

which hot spots are “hotter” and a method for prioritizing hot spots for resource

deployment based on their expected synchronized asset deployment and the objective

of the intervention. Finally, it provided a performance metric that can be used to
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compare the expected effectiveness of different types of resources; the performance

metric, itself, can be calibrated to reflect the temporal and spatial dynamics of the

historical disorder events.



CHAPTER FIVE

Case Studies

The actionable hot spot methodology described in earlier chapters was originally de-

veloped to help fight the IED problem in Iraq. Existing spatial analysis tools were

modified to allow decisionmakers to limit the number of candidate IED hot spots

to areas that conformed to the physical limits of the resources tactical commanders

intended to deploy against IED emplacers. Through examples across different re-

search areas, this chapter serves as a response to the third research question: Can the

actionable hot spots methodology be applied to guide resource allocation in research

areas beyond the IED application for which it was originally developed?

It is the authors’ hope that this generalized version of the AHS methodology will

find usefulness beyond the counter-IED application for which it was developed. Any

decisionmaker who is faced with deploying scarce resources to geographic areas where

certain types of undesirable activity or phenomena occur may find this approach use-

ful. This approach is not intended to replace any existing spatial analysis tools but

rather to augment them with the ability to conduct analysis where known constraints

exist. To demonstrate the diversity of public policy areas under which this approach

may be used, this report also provides three example applications; one in the mar-

itime domain with national security implications (piracy in the Gulf of Aden), one

in domestic health care delivery (colon cancer screening in a western U.S. state), and

one in criminal justice (crime in a major metropolitan area). In future research, we

plan to further explore the AHS approach using simulated data to determine its ap-

propriateness given a wider variety of temporal-spatial patterns, resource constraints,

and adaptation that may result as actors attempt to move their disorder events to

areas that are underresourced.

We recognize that numerous models addressing resource allocation have been spec-

ified for problems related to police, fire, emergency medical services, health care, etc.,

in addition to the IED emplacement problem. Our case studies explore research

51
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topics in which RAND is currently involved and where both the problem objectives

and constraints have been clearly established by subject matter experts. Although

solutions to domestic health care delivery can be easily handled by well-known ap-

proaches, such as the Maximal Covering Location Problem (MCLP), we believe that

the AHS approach provides an alternative solution that leverages commonly used

hot spot identification tools and may appeal to geospatial analysts and policymakers

unfamiliar with integer-programming approaches. Our approach may also add value

to those types of resource allocation problems discussed in the other case studies —

and perhaps to additional topic areas as well. The prioritization phase of the AHS

methodology captures shifts in spatial patterns that may occur as new target oppor-

tunities arise and/or the deployment of resources intended to interrupt future disorder

events causes the actors to avoid detection. In that sense, we see the AHS approach

as one possible way to address resource allocation problems when there is a repeating

action-reaction exchange between those actors who deploy resources against disorder

activities and those who are responsible for them.

Maritime Piracy

Maritime piracy is a centuries-old problem that threatens international shipping. In

recent years, there has been an increasing number of pirate attacks off the coast of

Somalia and in the Gulf of Aden (see Figure 5.1). In August 2008, the multinational

Combined Task Force 150 established a Maritime Security Patrol Area (MSPA) in

the Gulf of Aden to combat piracy in that region. In November 2008, United Nations

Security Council Resolution 1838 granted nations with armed vessels the authority

to exercise force to repress pirate acts. This issue moved to the forefront of U.S.

security concerns when a vessel with a U.S. flag, the Maersk Alabama, was seized by

four Somali pirates about 280 miles southeast of the port city, Eyl. Ultimately, U.S.

Navy SEAL snipers killed three of the pirates and took a fourth into custody. With

U.S. Naval Forces now patrolling the Gulf of Aden, a tool such as the actionable hot

spots methodology might be used to find small areas preferred by pirates to conduct

their attacks and launch direct counter-piracy actions given their available resources.

Since the MSPA encompasses a huge geographic area, identification of actionable hot

spots would enable naval commanders to focus their resources on areas that have

historically demonstrated clustering. For this example, a patrolling U.S. destroyer

is the deployable resource. A March 25, 2009, interview with a former Navy SEAL,

Richard J. Hoffmann, yielded information about the range of the destroyer and its
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operational planning cycle supporting counter-piracy efforts. With a suggested time of

40 minutes between realization that a pirate attack was imminent and the conclusion

of the attack, we estimated that the single destroyer must be within 20 nautical miles

in order to respond before the attack is over and the perpetrators have escaped.

Objective: To deter, disrupt, or prevent pirate activity

in the MSPA

Deployable Resource(s): U.S. Navy destroyer

Constraints:

Spatial — The actionable response radius is 20 nautical

miles (nm)

Temporal — The destroyer remains afloat 24 hours

per day, during which time it is available

to respond to distress calls

Quantity — There is only one destroyer

In this case study, we assumed that the naval task group selects a position to

locate its destroyer at the beginning of each week based on recent piracy attack

patterns. Every seven days, the patterns are reanalyzed and the destroyer moves

to the position where it is expected to be within range of the most future piracy

attacks that are expected to occur. We calibrated input parameters experimentally to

determine (1) the number of days of historical events that should be used to determine

an actionable hot spot, (2) whether the events should be weighted over time to put

less emphasis on observations occurring in the window, and (3) the minimum number

of observations required before a cluster is eligible to become a hot spot. The data

were calibrated on a weekly basis for the 15 weeks prior to September 17, 2008, and a

single actionable hot spot was selected weekly based on a prioritization of all candidate

hot spots that were within the resource constraints. The highest performance level

was returned when the 45 days of historical data were used (selected from 15, 45, or

90 days), when equal weight was given to each observation (compared with a lesser

weight for older observations), indicating persistence in the location of hot spots, and

when the minimum cluster size was 3 (selected from 2, 3, 4 or 5). We tested all

possible combinations, and the combination of these three input parameters yielded

an expected effectiveness of 40 events in 105 days. This means that 40 piracy events

occurred within the 20 nautical miles (nm) of the destroyer’s position within a week

after the position was selected. Over the 15-week period, a total of 15 hot spots were

identified — one per week — and a new position was located each week based on
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Figure 5.1
Piracy Incidents in the Gulf of Aden, July – December 2008
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Source: National Geospatial Intelligence Agency.

historical data available prior to the positioning recommendation.

Given the parameters that yielded the maximum effectiveness during the calibra-

tion phase, we used the data from September 17, 2009, to December 31, 2009, to

measure performance. Overall, 15 actionable hot spots were identified (one per week

using only the last 45 days of data to select and prioritize actionable hot spots). One

or more piracy events occurred within the identified hot spots during eight of the

15 different weeks in the evaluation period. In total, there were ten piracy events

within the actionable hot spots during the 15 weeks. There was less piracy activity in

the study area than during the calibration, but, on one day, there were five distinct

clusters of observations that met the criteria for resource deployment (having three

or more events within a radius of 20 nautical miles within the last 45 days). This

indicates that the AHS approach can be useful in selecting and prioritizing actionable

clusters when the data indicate several areas that should be considered for resource

deployment. The success rate is much lower than the other case studies, but the
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size of the area is an important consideration: During the 15-week evaluation period,

there were only 131 reported piracy incidents over the entire Gulf of Aden/Somali

coast. Given that the total area is thousands of square kilometers and there was a

small number of events in this time period, we found the ability to allocate resources

against ten of those events in a circle with a radius of 20 nm to be fairly encouraging

since only one destroyer was assumed to be capable of deploying against piracy over

a huge area.

Colon Cancer

RAND Health’s research portfolio includes various projects supporting efforts of

health care providers in different regions to improve the quality and outcomes of

care among the diverse populations they serve. For example, a major concern of

health care plans and providers located in the western United States is the relatively

high rate and poor outcomes of colon cancer among large minority groups, such as

Hispanics. Such gaps are thought to be due, in part, to very low rates of preventive

screening (e.g., colonoscopy) among certain minority groups. That is, even when

insured, certain minority groups tend to have substantially lower rates of screening

than comparable white patients. Thus, many health plans and providers are inter-

ested in finding more efficient and effective ways to identify where groups of high risk

members live and target interventions to increase colon cancer screening.

In the case example that follows, a group of health providers based in the western

United States were interested in (a) establishing screening clinics and public outreach

information campaigns in local neighborhoods of the county in the study area with

high levels of noncompliance among minorities and (b) staffing a clinic with personnel

who understand the languages and cultural sensitivities in the selected neighborhoods.

For confidentiality purposes, the identity of the health care providers and the par-

ticipants in the particular county considered will remain anonymous. In addition,

the specific geographic location has been masked by shifting the longitude by a fixed

amount, selecting a rectangular region that encloses the data, and removing the un-

derlying data layers depicting roads, streams, and place names that would allow the

area to be identified. Nevertheless, the case represents a subset of actual subscriber

data that exhibits real instances of noncompliance with recommendations for colon

cancer screening. It should be noted here that the MCLP would be an entirely ap-

propriate — and perhaps more efficient — way of addressing this problem, since the

disorder events are static and there is unlikely to be any attempts by the unscreened



56 Resource-Constrained Spatial Hot Spot Identification

subscribers to change address so they fall outside of the reach of established clinics.

Objective: To increase colon cancer screening compliance

among minorities in the subscriber database

Deployable Resource(s): Screening clinics and public outreach information

campaigns staffed with culturally sensitive

personnel

Constraints:

Spatial — The actionable response radius is either 1 or

2 km — within walking distance of the

clinic and within the capacity limits of a clinic

capable of handling colon cancer screening in

a dense, urban area

Temporal — None

Quantity — There is funding for two small clinics or one

large one

The data set of subscribers contains 1,753 observations, of which a minority has

not complied with health care providers’ recommendations for colon cancer screening

as of December 2006. For the analysis of alternatives, the provider is comparing the

relative potential effectiveness that would result from setting up two small clinics aug-

mented with outreach information campaigns that have a radius of 1 km or one large

clinic/outreach effort with a radius of 2 km. An unconstrained hot spot analysis using

the kernel density approach indicates two potential areas for locating the screening

clinics (see Figure 5.2). This example provides a good example of why constraints

need to be considered during hot spot analysis:

• The size of the two hot spots generated by the KDE approach exceeds the spatial

constraint (the red area in the lower right is approximately 2–4 times larger than

the actionable response radii) so it is unclear which sub-region within the larger

hot spots should be targeted for intervention.

• It is unclear which of the nonactionable hot spots is “hotter” and should be se-

lected for resource deployment in order to yield the largest effect on the minority

colon cancer rate.

• The KDE approach does not allow a common baseline against which the effec-

tiveness of alternative courses of action can be measured.
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Figure 5.2
KDE of Minority Colon Cancer Screening Noncompliance
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The highest-prioritized hot spots were the ones with the greatest amount of mi-

norities noncompliant with color cancer screening within the radius of the clinic. For

the alternative with two small clinics, the largest numbers of noncompliant individu-

als were 80 and 64, respectively, yielding a total impact of 144 individuals (8.2 percent

of the entire target population) that may be targeted for outreach. With the single,

large clinic alternative — the largest number of individuals within a circle of radius

2 km is only 103 individuals (5.9 percent of the entire target population). This case

study demonstrates the benefits of using the AHS approach and indicates its potential

usefulness in the health care delivery field. The AHS approach allows a comparison

of the effectiveness of alternatives based on an assumed deployment of constrained

resources.
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Metropolitan Crime

A major issue facing a metropolitan area in the southern United States is the high

burglary rate that has plagued the city. The city’s police department is divided into

several distinct precincts, each one allocated funding to address the most pressing

crime problems in that area. Operations commanders in each precinct must allocate

scarce resources with the knowledge that an increase in policing resources in one area

will result in less attention to crime problems elsewhere in their jurisdiction. In this

case study, the commander of Precinct 1 must decide where to position patrol cars to

create the largest possible impact in deterring, disrupting, or preventing burglary in

the area. For confidentiality purposes, the identity of the metropolitan area and its

criminal activity will remain anonymous. The data presented in this case study have

been masked by shifting the longitude of historical events by a fixed amount, selecting

a rectangular region of the city to obscure its shape, and removing the underlying

data layers that would allow the metropolitan area to be identified. However, the

study area represents a subset of actual crime data that exhibits real instances of

burglary from December 16, 2008, to July 15, 2009. The available police patrol

times are midnight – 8am, 8am – 4pm, and 4pm – midnight. The historical data

containing 1,261 historical burglary incidents indicate that 52 percent of burglaries in

the precinct during the analysis period occurred during the 8am – 4pm shift, with 41

percent occurring in the 4pm – midnight shift and only 7 percent occurring between

midnight and 8am. For that reason, the additional patrol car will be deployed to

a hot spot during the 8am – 4pm shift. The 658 observations occurring during the

8am – 4pm shift are shown in Figure 5.3. The density of observations indicates how

difficult it may be to choose an actionable hot spot from this 19-square-mile precinct.

Objective: To deter, disrupt, or prevent burglary in

Precinct 1 using patrol cars

Deployable Resource(s): Patrol cars

Constraints:

Spatial — A patrol car may serve a 10-square-block area

(1 mi x 1 mi)

Temporal — The patrol car is available from 8am to 4pm daily

Quantity — Funding allows for 1 patrol car

Only historical burglary events that occurred within the 8am – 4pm shift were

included in the analysis. Calibration of input parameters was conducted to experi-
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Figure 5.3
Daytime Burglary Events, December 16, 2008, to July 15, 2009
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Source: Anonymous Metropolitan Police Department.

mentally determine (1) the number of days of historical events that should be used

to determine an actionable hot spot, (2) whether the events should be weighted over

time to put less emphasis on observations that occurred earlier in the window, and (3)

the minimum number of observations required before a cluster was eligible to become

a hot spot. The data were calibrated on a daily basis for the 15 weeks prior to April 1,

2009, and a single actionable hot spot was selected daily based on prioritization of all

candidate hot spots that were within the resource constraints. The greatest number

of events occurred when 28 days of historical data were used (selected from 7, 14,

28, or 35 days); equal weight was given to each observation (compared with a lesser

weight for older observations), indicating persistence in the location of hot spots; and

the minimum cluster size was 5 (selected from 2, 3, 4, or 5). All possible combinations

were tested, and the combination of these three input parameters yielded an expected

effectiveness of 32 percent. This means that 34 34 / 105 = 32 percent) burglaries

occurred within the ten-square-block patrol area selected as the most actionable hot
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spot during the 8am – 4pm window over the 15-week period (a total of 105 hot spots

were identified — one per day).

With the parameters that yielded the maximum effectiveness during the calibra-

tion phase, we used the data from April 1, 2009, to July 15, 2009, to measure expected

performance. Overall, 105 actionable hot spots were identified (one per day using only

the last 28 days of data to select and prioritize actionable hot spots). One or more

burglary events occurred within the identified hot spots during the 8am – 4pm shift

on 35 different days. In total, 44 burglaries occurred within the actionable hot spots

during the 105 days, which gives an expected effectiveness of (44/105 = 42 percent).

There was significant burglary activity in the study area, and on one day there were

nine distinct clusters of observations that met the criteria for resource deployment.

This indicates that the AHS approach can be useful in selecting and prioritizing ac-

tionable clusters when the data indicate several areas that should be considered for

resource deployment. In addition to helping choose the “hottest” hot spots that are

within resource constraints (and very small in this example), this case study also

indicates that the AHS approach has potential beyond the counter-IED application

for which it was originally developed. Selection of a new one-square-mile area to

patrol daily in a 19-square-mile area based on historical data yielded a relatively high

success rate of 42 percent, indicating that the AHS approach may be useful to law

enforcement personnel.

Summary

This chapter has demonstrated that the AHS methodology created for a specific

application (counter-IED operations) can be applied in other research areas. Augmen-

tation of existing analyses with the AHS methodology will allow geospatial analysts

not only to conduct hot spot analysis using their standard toolkit but to be able to

do so while considering resource constraints. The approach also allows policymakers

to compare alternative suites of resources to determine which is expected to generate

a larger impact on reducing the disorder events that they are attempting to deter,

disrupt, or prevent. The success of the approach is based on the degree to which

clustering is present in the data and the ability to deploy available resources that can

be spatial and temporally matched against the disorder activity.
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Implications

Decisionmakers tasked with deterring, interrupting, or preventing undesired activities

are limited by constraints caused by available, scarce resources; often these resources

cannot cover the vast geographic areas in which the problems occur. In the extensive

body of research addressing the use of spatial analysis in criminal analysis, pattern

recognition of insurgent and terrorist activity, and public health, the term hot spot

has been adopted to indicate areas where there exists a greater than average number

of problem events. This technical report provides a methodology that can be used to

select and prioritize hot spots against which constrained resources can be deployed.

The methodology provides a means of measuring the expected effectiveness that would

result by deploying resources against a problem using scarce resources. Not only does

this approach provide a tool for aiding the decisionmaker as he/she chooses how to

allocate existing resources, it also provides a mechanism for comparing the potential

effectiveness of alternative resources.

The “actionable hot spot” methodology is not intended to replace any of the

existing tools widely used by spatial analysts. Rather, it provides an enhancement to

hot spot detection algorithms by enabling geospatial analysts to match problem areas

with the resources that they plan to deploy to combat the underlying problem. Users

of CrimeStat�, GeoDataTM , and ArcGIS� across many fields may find utility in

this approach when they are faced with constrained resources. Originally developed

for a particular application, combating IED emplacement in Iraq, the approach had

obvious applications in other fields. By modifying the original application to make it

generalizable across a broad array of research topics, we have created a policy decision

tool that may find utility across many areas (see Table 6.1 for a nonexhaustive list of

potential applications).
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Table 6.1
Potential Applications of Actionable Hot Spot Methodology

Topic Application Deployable Resource
National security Maritime piracy Visual surveillance assets

Armed surface ships

Counter-IED/indirect fire Snipers
Visual surveillance assets
Infrared detectors
Quick reaction forces

Insurgent network detection Visual surveillance assets
Signal direction-finding assets

Homeland security Border integrity Visual surveillance assets
Acoustic surveillance assets
Border patrol agents

Criminal justice Law enforcement Police patrols
Visual surveillance assets
Task forces

Health Disease prevention Screening clinics
Targeted public service campaigns

Pandemic crises Immunization clinics
Targeted public service campaigns

Labor and population Economic disparity Employment programs
Poverty assistance
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